IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp70-82.html
   My bibliography  Save this article

Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages

Author

Listed:
  • Phogat, V.
  • Pitt, T.
  • Cox, J.W.
  • Šimůnek, J.
  • Skewes, M.A.

Abstract

Water use and salinity dynamics in the soils are the crucial management factors influencing the productivity and long-term sustainability of almond and associated environment. In this study, HYDRUS-2D was calibrated and validated on measured spatial and temporal water contents and soil salinities (ECe) distributions under almond irrigated with different water qualities (ECiw) at different physiological stages. During two irrigation seasons (2014–15 and 2015–16), less saline irrigation water (average ECiw 0.78 dS/m) was substituted for recycled irrigation water (average ECiw 1.9 dS/m) in three phenologically different growth stages; pre-pit hardening, kernel growth, and post-harvest, along with no and full substitution during the entire season. Graphical and statistical comparisons (RMSE, MAE, ME, the Nash and Sutcliffe model efficiency, and the coefficient of determination) between measured and simulated values of water contents and ECe in the soil showed a close agreement in all treatments. The water balance data revealed that the seasonal crop evapotranspiration of almond (ETc) varied from 850 to 955 mm in different treatments over the two seasons which represented 68–79% of the water application. Trees irrigated with only less saline water through the two seasons (average ECiw 0.78 dS/m) showed 10% higher plant water uptake as compared to those irrigated with recycled water only (average ECiw 1.9 dS/m). Substituting less saline irrigation during the kernel growth phase, between pit-hardening and harvest, showed greater water uptake by almond and lower salinity buildup in the soil as compared to treatments that substituted less saline irrigation early or late in the season. For all treatments, the average daily root zone ECe (2.4–3.7 dS/m) remained above the level of the almond salinity tolerance threshold (ECe = 1.5 dS/m) throughout the period of investigation. Water use efficiency of almonds varied in a narrow range (0.21–0.25 kg m−3) for different treatments. Deep drainage below the root zone (2 m) varied from 22.4–31.1% of the total water application (Rainfall + Irrigation), which was episodic and insufficient to contain the salinity below the almond threshold. This study provided a greater understanding of soil water and salinity dynamics under almond irrigated with waters of varying qualities.

Suggested Citation

  • Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:70-82
    DOI: 10.1016/j.agwat.2018.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kandelous, Maziar M. & Simunek, Jirí, 2010. "Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 97(7), pages 1070-1076, July.
    2. Hassanli, Mohammad & Ebrahimian, Hamed & Mohammadi, Ehsan & Rahimi, Amirreza & Shokouhi, Amirhossein, 2016. "Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models," Agricultural Water Management, Elsevier, vol. 176(C), pages 91-99.
    3. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    4. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    5. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    6. Egea, Gregorio & Nortes, Pedro A. & González-Real, María M. & Baille, Alain & Domingo, Rafael, 2010. "Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 97(1), pages 171-181, January.
    7. Franco, J. A. & Abrisqueta, J. M. & Hernansaez, A. & Moreno, F., 2000. "Water balance in a young almond orchard under drip irrigation with water of low quality," Agricultural Water Management, Elsevier, vol. 43(1), pages 75-98, February.
    8. Nightingale, H. I. & Hoffman, G. J. & Rolston, D. E. & Biggar, J. W., 1991. "Trickle irrigation rates and soil salinity distribution in an almond (Prunus amygdalus) orchard," Agricultural Water Management, Elsevier, vol. 19(3), pages 271-283, April.
    9. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    10. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    4. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Alexandre, Carlos & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use, soil water balance and soil salinization risks of Mediterranean tree orchards in southern Portugal under current climate variability: Issues for salinity control and irrigation management," Agricultural Water Management, Elsevier, vol. 283(C).
    5. Bretreger, David & Yeo, In-Young & Hancock, Greg, 2022. "Quantifying irrigation water use with remote sensing: Soil water deficit modelling with uncertain soil parameters," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Peirong Lu & Yaxin Liu & Yujie Yang & Yu Zhu & Zhonghua Jia, 2024. "Evaluating Soil Water–Salt Dynamics under Brackish Water Drip Irrigation in Greenhouses Subjected to Localized Topsoil Compaction," Agriculture, MDPI, vol. 14(3), pages 1-22, March.
    7. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Pitt, T. & Petrie, P.R., 2020. "Impact of long-term recycled water irrigation on crop yield and soil chemical properties," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Zhang, Yuehong & Li, Xianyue & Šimůnek, Jiří & Shi, Haibin & Chen, Ning & Hu, Qi, 2023. "Quantifying water and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and the stable isotope method," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Kassaye, Kassu Tadesse & Boulange, Julien & Lam, Van Thinh & Saito, Hirotaka & Watanabe, Hirozumi, 2020. "Monitoring soil water content for decision supporting in agricultural water management based on critical threshold values adopted for Andosol in the temperate monsoon climate," Agricultural Water Management, Elsevier, vol. 229(C).
    11. Ramos, Tiago B. & Oliveira, Ana R. & Darouich, Hanaa & Gonçalves, Maria C. & Martínez-Moreno, Francisco J. & Rodríguez, Mario Ramos & Vanderlinden, Karl & Farzamian, Mohammad, 2023. "Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Lariza Benedetti & Vívian Ebeling Viana & Pâmela Carvalho-Moore & Vinicios Rafael Gehrke & Gustavo Maia Souza & Edinalvo Rabaioli Camargo & Luis Antonio de Avila & Nilda Roma-Burgos, 2021. "Recurrent Selection with Low Herbicide Rates and Salt Stress Decrease Sensitivity of Echinochloa colona to Imidazolinone," Agriculture, MDPI, vol. 11(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    2. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Mirás-Avalos, José M. & Gonzalez-Dugo, Victoria & García-Tejero, Iván F. & López-Urrea, Ramón & Intrigliolo, Diego S. & Egea, Gregorio, 2023. "Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain," Agricultural Water Management, Elsevier, vol. 279(C).
    4. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
    5. Vivaldi, Gaetano Alessandro & Camposeo, Salvatore & Romero-Trigueros, Cristina & Pedrero, Francisco & Caponio, Gabriele & Lopriore, Giuseppe & Álvarez, Sara, 2021. "Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    7. Phogat, V. & Skewes, Mark A. & Mahadevan, M. & Cox, J.W., 2013. "Evaluation of soil plant system response to pulsed drip irrigation of an almond tree under sustained stress conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 1-11.
    8. Pérez-Pastor, A. & Ruiz-Sánchez, Mª C. & Domingo, R., 2014. "Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees," Agricultural Water Management, Elsevier, vol. 134(C), pages 110-118.
    9. José Manuel Mirás-Avalos & Pedro Marco & Sergio Sánchez & Beatriz Bielsa & María José Rubio Cabetas & Vicente González, 2022. "Soil Quality Index of Young and Differently Managed Almond Orchards under Mediterranean Conditions," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    10. Girona, J. & Mata, M. & Marsal, J., 2005. "Regulated deficit irrigation during the kernel-filling period and optimal irrigation rates in almond," Agricultural Water Management, Elsevier, vol. 75(2), pages 152-167, July.
    11. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    12. Nayebloie, Fatemeh & Kouchakzadeh, Mahdi & Ebrahimi, Kumars & Homaee, Mahdi & Abbasi, Fariborz, 2022. "Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    14. Martín-Palomo, M.J. & Corell, M. & Girón, I. & Andreu, L. & Trigo, E. & López-Moreno, Y.E. & Torrecillas, A. & Centeno, A. & Pérez-López, D. & Moriana, A., 2019. "Pattern of trunk diameter fluctuations of almond trees in deficit irrigation scheduling during the first seasons," Agricultural Water Management, Elsevier, vol. 218(C), pages 115-123.
    15. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    16. García-Tejero, I.F. & Rubio, A.E. & Viñuela, I. & Hernández, A & Gutiérrez-Gordillo, S & Rodríguez-Pleguezuelo, C.R. & Durán-Zuazo, V.H., 2018. "Thermal imaging at plant level to assess the crop-water status in almond trees (cv. Guara) under deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 208(C), pages 176-186.
    17. Phogat, V. & Mallants, Dirk & Cox, J.W. & Šimůnek, J. & Oliver, D.P. & Pitt, T. & Petrie, P.R., 2020. "Impact of long-term recycled water irrigation on crop yield and soil chemical properties," Agricultural Water Management, Elsevier, vol. 237(C).
    18. Puerto, P. & Domingo, R. & Torres, R. & Pérez-Pastor, A. & García-Riquelme, M., 2013. "Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield," Agricultural Water Management, Elsevier, vol. 126(C), pages 33-45.
    19. Ning, Songrui & Zhou, Beibei & Shi, Jianchu & Wang, Quanjiu, 2021. "Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang," Agricultural Water Management, Elsevier, vol. 245(C).
    20. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.