IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001751.html
   My bibliography  Save this article

Enhancing water balance simulations in SWAT for paddy-dominated catchments through refined soil moisture dynamics

Author

Listed:
  • Xiang, Meng
  • Wu, Di
  • Yu, Qianan
  • Wu, Haitao
  • Cai, Tianchi
  • Cui, Yuanlai

Abstract

Agricultural water management, especially irrigation regimes such as Alternate Wetting and Drying (AWD) in rice cultivation, holds significant implications for regional water balances. However, the Soil and Water Assessment Tool (SWAT) model, widely used for agricultural water management, has notable limitations in accurately simulating AWD irrigation practices due to improper description of soil moisture dynamics. In this study, a soil moisture module that dynamically simulates surface ponding and soil water redistribution is introduced to SWAT to address the limitation. The calculation of evapotranspiration (ET) and percolation under unsaturated conditions is improved. A controlling irrigation scheme based on soil moisture content and field water depth is introduced to manage the irrigation and drainage operations. Subsequently, the improved SWAT-Paddy Water (SWAT-PW) model is evaluated in the Yangshudang (YSD) basin, where 55.70 % of the area is rice and AWD irrigation is widely promoted, in the Zhanghe Irrigation District, China. The improvements in the Nash-Sutcliffe efficiency coefficient(NSE) and relative error coefficient(RE) demonstrate that SWAT-PW shows promise for improving predictions of water balance components and runoff compared with the original SWAT model and existing SWAT-MD model, which are critical for optimizing irrigation scheduling and reducing water waste in paddy fields. Scenario analysis (1999–2019) demonstrated the recommended AWD3, using alternate wetting and drying irrigation with optimized maximum ponding depth, could reduce total irrigation volumes by 16.92 % compared to local continuous flooding (CF1), providing evidence-based support for adopting AWD in water-scarce areas. While the results are demonstrated in the YSD basin, SWAT-PW’s modular design enables its application to global paddy-dominated catchments with similar irrigation practices, provided local soil, crop, and climate data are available. While the accuracy of ET depends on region-specific crop coefficients, future integration with remote sensing data could enhance its scalability. Therefore, through the soil moisture dynamics module, this study advances hydrological modeling for water-saving irrigation, offering policymakers a tool to balance agricultural productivity and water sustainability in rice systems.

Suggested Citation

  • Xiang, Meng & Wu, Di & Yu, Qianan & Wu, Haitao & Cai, Tianchi & Cui, Yuanlai, 2025. "Enhancing water balance simulations in SWAT for paddy-dominated catchments through refined soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001751
    DOI: 10.1016/j.agwat.2025.109461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    2. Droogers, P. & Kite, G., 2001. "Estimating productivity of water at different spatial scales using simulation modeling," IWMI Research Reports H028144, International Water Management Institute.
    3. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Feng, Liping & Bouman, B. A.M. & Tuong, T.P. & Cabangon, R.J. & Li, Yalong & Lu, Guoan & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: I. Field experiments and model evaluation," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 1-13, March.
    5. Droogers, Peter & Kite, Geoff, 2001. "Estimating productivity of water at different spatial scales using simulation modeling," IWMI Research Reports 44568, International Water Management Institute.
    6. Sakaguchi, A. & Eguchi, S. & Kato, T. & Kasuya, M. & Ono, K. & Miyata, A. & Tase, N., 2014. "Development and evaluation of a paddy module for improving hydrological simulation in SWAT," Agricultural Water Management, Elsevier, vol. 137(C), pages 116-122.
    7. Sonkar, Ickkshaanshu & Kotnoor, Hari Prasad & Sen, Sumit, 2019. "Estimation of root water uptake and soil hydraulic parameters from root zone soil moisture and deep percolation," Agricultural Water Management, Elsevier, vol. 222(C), pages 38-47.
    8. Bouman, B. A. M. & Wopereis, M. C. S. & Kropff, M. J. & ten Berge, H. F. M. & Tuong, T. P., 1994. "Water use efficiency of flooded rice fields II. Percolation and seepage losses," Agricultural Water Management, Elsevier, vol. 26(4), pages 291-304, December.
    9. Ahmadzadeh, Hojat & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2016. "Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment," Agricultural Water Management, Elsevier, vol. 175(C), pages 15-28.
    10. Rodney Tai-Chu Sheng & Yu-Hsiang Huang & Pin-Cheng Chan & Showkat Ahmad Bhat & Yi-Chien Wu & Nen-Fu Huang, 2022. "Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing," Agriculture, MDPI, vol. 12(12), pages 1-23, December.
    11. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
    12. Tsakiris, G. & Kiountouzis, E., 1982. "A model for the optimal operation of an irrigation system," Agricultural Water Management, Elsevier, vol. 5(3), pages 241-252, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Wu, Di & Cui, Yuanlai & Wang, Yitong & Chen, Manyu & Luo, Yufeng & Zhang, Lei, 2019. "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model," Agricultural Water Management, Elsevier, vol. 213(C), pages 280-288.
    3. Dugan, Patrick & Dey, Madan M. & Sugunan, V.V., 2006. "Fisheries and water productivity in tropical river basins: Enhancing food security and livelihoods by managing water for fish," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 262-275, February.
    4. Ines, Amor V. M. & Gupta, Ashim Das & Loof, Rainer, 2002. "Application of GIS and crop growth models in estimating water productivity," Agricultural Water Management, Elsevier, vol. 54(3), pages 205-225, April.
    5. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    6. de Silva, C. Shanthi & Rushton, K.R., 2008. "Representation of rainfed valley ricefields using a soil-water balance model," Agricultural Water Management, Elsevier, vol. 95(3), pages 271-282, March.
    7. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Liu, Chen-Wuing & Chen, Shih-Kai & Jou, Shew-Wen & Kuo, Sheng-Feng, 2001. "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan," Agricultural Systems, Elsevier, vol. 68(1), pages 41-54, April.
    9. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    10. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    11. Jalal Mirnezami, S. & Molle, François & Talebi Eskandari, Soroush, 2024. "Chronicle of a disaster foretold: The politics of restoring Lake Urmia (Iran)," World Development, Elsevier, vol. 182(C).
    12. Massey, J.H. & Reba, M.L. & Adviento-Borbe, M.A. & Chiu, Y.L. & Payne, G.K., 2022. "Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    14. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Azharuddin Abd Aziz & Mehnaz Mosharrof, 2022. "Combined Use of Biochar with 15 Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    15. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Farzad Emami & Manfred Koch, 2018. "Agricultural Water Productivity-Based Hydro-Economic Modeling for Optimal Crop Pattern and Water Resources Planning in the Zarrine River Basin, Iran, in the Wake of Climate Change," Sustainability, MDPI, vol. 10(11), pages 1-32, October.
    17. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    18. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    19. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    20. Timsina, J. & Buresh, R.J. & Dobermann, A. & Dixon, J. (ed.), 2011. "Rice-maize systems in Asia: current situation and potential," IRRI Books, International Rice Research Institute (IRRI), number 164490, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.