IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v309y2025ics0378377425000265.html
   My bibliography  Save this article

Optimizing water-use efficiency under elevated CO₂: A meta-analysis of crop type, soil modulation, and enrichment methods

Author

Listed:
  • Mokhtar, Ali
  • He, Hongming
  • Attaher, Samar
  • Salem, Ali
  • Alam, Muneer

Abstract

Elevated CO2 (eCO2) significantly affect the carbon-water cycle in terrestrial ecosystems especially for gas exchange and water use efficiency (WUE). Therefore, in this study, we have conducted a meta-analysis to quantitative statistical means among studies and discuss how WUE responds to eCO2 under pathway (C3 and C4), four enrichment methods and soil types based on 124 peer-reviewed studies and 1474 observations to provide an in-depth overview of how these factors interact under future CO₂ scenarios. Key findings reveal that: (1) C₃ crops, such as potato and tomato, show significantly greater increases in WUE compared to C₄ crops like maize, with effect sizes of 13.96 and 7.02 for plant-level WUE (WUEₚ), suggesting that C₃ crops may be more advantageous in water-limited environments due to reduced photorespiration under eCO₂; (2) soil type substantially modulates WUE responses, with clay soils, due to their high water-holding capacity, demonstrating the highest WUE enhancements (effect sizes of 7.87 for WUEₚ and 12.54 for yield WUE, WUEᵧ), while sandy soils, characterized by rapid drainage, showed limited improvements; and (3) greenhouse and growth chamber studies displayed the highest WUE improvements, while FACE experiments, which better replicate real-world conditions, indicated smaller WUE increases due to environmental variability, underscoring the need for a hybrid approach that merges controlled data with field insights to develop practical, water-efficient agricultural strategies. Collectively, these findings highlight the potential for crop- and soil-specific strategies to optimize WUE under elevated CO₂, offering valuable insights for sustainable agriculture and climate adaptation.

Suggested Citation

  • Mokhtar, Ali & He, Hongming & Attaher, Samar & Salem, Ali & Alam, Muneer, 2025. "Optimizing water-use efficiency under elevated CO₂: A meta-analysis of crop type, soil modulation, and enrichment methods," Agricultural Water Management, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000265
    DOI: 10.1016/j.agwat.2025.109312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425000265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Shahzad & Xu, Yueyue & Ma, Xiangcheng & Ahmad, Irshad & Manzoor, & Jia, Qianmin & Akmal, Muhammad & Hussain, Zahid & Arif, Muhammad & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns," Agricultural Water Management, Elsevier, vol. 219(C), pages 1-11.
    2. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.
    3. Viechtbauer, Wolfgang, 2010. "Conducting Meta-Analyses in R with the metafor Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i03).
    4. Lenka, Narendra Kumar & Lenka, Sangeeta & Thakur, Jyoti Kumar & Yashona, Dharmendra Singh & Shukla, A.K. & Elanchezhian, R. & Singh, K.K. & Biswas, A.K. & Patra, A.K., 2020. "Carbon dioxide and temperature elevation effects on crop evapotranspiration and water use efficiency in soybean as affected by different nitrogen levels," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    6. Jack A. Morgan & Daniel R. LeCain & Elise Pendall & Dana M. Blumenthal & Bruce A. Kimball & Yolima Carrillo & David G. Williams & Jana Heisler-White & Feike A. Dijkstra & Mark West, 2011. "C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland," Nature, Nature, vol. 476(7359), pages 202-205, August.
    7. Kimball, B. A. & Idso, S. B., 1983. "Increasing atmospheric CO2: effects on crop yield, water use and climate," Agricultural Water Management, Elsevier, vol. 7(1-3), pages 55-72, September.
    8. Zhang, Dongsheng & Li, Ali & Lam, Shu Kee & Li, Ping & Zong, Yuzheng & Gao, Zhiqiang & Hao, Xingyu, 2021. "Increased carbon uptake under elevated CO2 concentration enhances water-use efficiency of C4 broomcorn millet under drought," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Mbava, N. & Mutema, M. & Zengeni, R. & Shimelis, H. & Chaplot, V., 2020. "Factors affecting crop water use efficiency: A worldwide meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahil Bhatia & S. P. Singh, 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    2. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Lan, Kang & Chen, Xin & Ridoutt, Bradley G. & Huang, Jing & Scherer, Laura, 2021. "Closing yield and harvest area gaps to mitigate water scarcity related to China’s rice production," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Bart Verkuil & Serpil Atasayi & Marc L Molendijk, 2015. "Workplace Bullying and Mental Health: A Meta-Analysis on Cross-Sectional and Longitudinal Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
    8. Francesca Pilotto & Ingolf Kühn & Rita Adrian & Renate Alber & Audrey Alignier & Christopher Andrews & Jaana Bäck & Luc Barbaro & Deborah Beaumont & Natalie Beenaerts & Sue Benham & David S. Boukal & , 2020. "Meta-analysis of multidecadal biodiversity trends in Europe," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. repec:cup:judgdm:v:15:y:2020:i:6:p:972-988 is not listed on IDEAS
    10. Jonas Schmidt & Tammo H. A. Bijmolt, 2020. "Accurately measuring willingness to pay for consumer goods: a meta-analysis of the hypothetical bias," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 499-518, May.
    11. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    12. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    13. Mario Herberz & Tobias Brosch & Ulf J. J. Hahnel, 2020. "Kilo what? Default units increase value sensitivity in joint evaluations of energy efficiency," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(6), pages 972-988, November.
    14. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    15. repec:osf:metaar:tp45u_v1 is not listed on IDEAS
    16. Piers Steel & Sjoerd Beugelsdijk & Herman Aguinis, 2021. "The anatomy of an award-winning meta-analysis: Recommendations for authors, reviewers, and readers of meta-analytic reviews," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(1), pages 23-44, February.
    17. Augusteijn, Hilde Elisabeth Maria & van Aert, Robbie Cornelis Maria & van Assen, Marcel A. L. M., 2021. "Posterior Probabilities of Effect Sizes and Heterogeneity in Meta-Analysis: An Intuitive Approach of Dealing with Publication Bias," OSF Preprints avkgj, Center for Open Science.
    18. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Georgiou, George K. & Guo, Kan & Naveenkumar, Nithya & Vieira, Ana Paula Alves & Das, J.P., 2020. "PASS theory of intelligence and academic achievement: A meta-analytic review," Intelligence, Elsevier, vol. 79(C).
    20. Stephan Kambach & Ingolf Kühn & Bastien Castagneyrol & Helge Bruelheide, 2016. "The Impact of Tree Diversity on Different Aspects of Insect Herbivory along a Global Temperature Gradient - A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    21. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    22. Nan Wang & Yuxiang Luan & Rui Ma, 2024. "Detecting causal relationships between work motivation and job performance: a meta-analytic review of cross-lagged studies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.