IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424004852.html
   My bibliography  Save this article

Optimizing nutrient removal of algal-bacterial symbiosis system for treating low C/N farmland drainage

Author

Listed:
  • Luo, Lijie
  • Xiaojuan, He
  • Qin, Yifeng
  • Liu, Yaoze
  • Wu, Yizhao
  • Chen, Mingsheng
  • Liao, Yiying
  • Zhang, Liang
  • Li, Xudong

Abstract

The removal of nitrogen from farmland drainage is challenging due to the typically low carbon-to-nitrogen (C/N) ratio. In this study, an algal-bacterial symbiosis system was developed to treat low C/N farmland drainage. The investigation focused on the nutrient removal rates, microbial growth characteristics, extracellular polymeric substances (EPS) content, and microbial community species composition under varied disturbance frequencies and light conditions (intensity and duration). Results demonstrated that the optimal operating conditions were three disturbances per 24 h, a light intensity of 20,000 lux, and a 16-hour lighting duration. Under these conditions, the average removal rates of soluble chemical oxygen demand, total nitrogen, total phosphorus, nitrate nitrogen, and ammonia nitrogen reached 45.1 %, 73.3 %, 98.1 %, 63.1 %, and 97.3 %, respectively. Compared to continuous disturbance, intermittent disturbance reduced energy consumption by over 90 % and promoted higher biomass accumulation, with an average dry weight of 508.7 mg L−1 and chlorophyll-a concentration of 521.0 μg L−1. Meanwhile, a robust microbial community and a balanced bacterial-to-algal gene copy ratio (exceeding 25:1) were critical for nutrient removal. The optimized system facilitated symbiote secretion of bound polysaccharides (45.2 μg L−1, double that of other reactors), promoting the formation of robust biofilms and enhancing nutrient removal. This work provides a technical reference for improving nutrient removal in low C/N wastewater treatment processes.

Suggested Citation

  • Luo, Lijie & Xiaojuan, He & Qin, Yifeng & Liu, Yaoze & Wu, Yizhao & Chen, Mingsheng & Liao, Yiying & Zhang, Liang & Li, Xudong, 2024. "Optimizing nutrient removal of algal-bacterial symbiosis system for treating low C/N farmland drainage," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424004852
    DOI: 10.1016/j.agwat.2024.109149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Su, Jing & Ji, Danfeng & Lin, Mao & Chen, Yanqing & Sun, Yuanyuan & Huo, Shouliang & Zhu, Jianchao & Xi, Beidou, 2017. "Developing surface water quality standards in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 294-303.
    2. Singh, S.P. & Singh, Priyanka, 2015. "Effect of temperature and light on the growth of algae species: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 431-444.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shubhanvit Mishra & Yi-Ju Liu & Chi-Shuo Chen & Da-Jeng Yao, 2021. "An Easily Accessible Microfluidic Chip for High-Throughput Microalgae Screening for Biofuel Production," Energies, MDPI, vol. 14(7), pages 1-10, March.
    2. Shariff, Shoaib & Chakraborty, Saikat, 2017. "Two-scale model for quantifying the effects of laminar and turbulent mixing on algal growth in loop photobioreactors," Applied Energy, Elsevier, vol. 185(P2), pages 973-984.
    3. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    4. Su, Yujie & Song, Kaihui & Zhang, Peidong & Su, Yuqing & Cheng, Jing & Chen, Xiao, 2017. "Progress of microalgae biofuel’s commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 402-411.
    5. Najeeha Mohd Apandi & Mimi Suliza Muhamad & Radin Maya Saphira Radin Mohamed & Norshuhaila Mohamed Sunar & Adel Al-Gheethi & Paran Gani & Fahmi A. Rahman, 2021. "Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. El Shenawy, E.A. & Elkelawy, Medhat & Bastawissi, Hagar Alm-Eldin & Taha, Mohammed & Panchal, Hitesh & Sadasivuni, Kishor kumar & Thakar, Nishant, 2020. "Effect of cultivation parameters and heat management on the algae species growth conditions and biomass production in a continuous feedstock photobioreactor," Renewable Energy, Elsevier, vol. 148(C), pages 807-815.
    7. Vindel, José M. & Trincado, Estrella, 2021. "Viability assessment of algal wastewater treatment projects under outdoor conditions based on algal productivity and nutrient removal rate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Junzhi Zhang & Xiao He & Huixin Zhang & Yu Liao & Qi Wang & Luwei Li & Jianwei Yu, 2022. "Factors Driving Microbial Community Dynamics and Potential Health Effects of Bacterial Pathogen on Landscape Lakes with Reclaimed Water Replenishment in Beijing, PR China," IJERPH, MDPI, vol. 19(9), pages 1-12, April.
    10. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    11. Ma, Shiyan & Huang, Yun & Zhu, Xianqing & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Growth-based dynamic light transmission modeling and optimization in microalgal photobioreactors for high efficiency CO2 fixation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Peter, Angela Paul & Koyande, Apurav Krishna & Chew, Kit Wayne & Ho, Shih-Hsin & Chen, Wei-Hsin & Chang, Jo-Shu & Krishnamoorthy, Rambabu & Banat, Fawzi & Show, Pau Loke, 2022. "Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Bennetts, Shannon K & Love, Jasmine & Bennett, Clair & Burgemeister, Fiona & Westrupp, Elizabeth M & Hackworth, Naomi J & Mensah, Fiona K & Levickis, Penny & Nicholson, Jan M, 2023. "Do neighbourhoods influence how parents and children interact? Direct observations of parent–child interactions within a large Australian study," Children and Youth Services Review, Elsevier, vol. 146(C).
    14. Federico González-López & Leidy Rendón-Castrillón & Margarita Ramírez-Carmona & Carlos Ocampo-López, 2025. "Evaluation of a Landfill Leachate Bioremediation System Using Spirulina sp," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    15. Enamala, Manoj Kumar & Enamala, Swapnika & Chavali, Murthy & Donepudi, Jagadish & Yadavalli, Rajasri & Kolapalli, Bhulakshmi & Aradhyula, Tirumala Vasu & Velpuri, Jeevitha & Kuppam, Chandrasekhar, 2018. "Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 49-68.
    16. Tomasz Bochenski & Tanmay Chaturvedi & Mette Hedegaard Thomsen & Jens Ejbye Schmidt, 2019. "Evaluation of Marine Synechococcus for an Algal Biorefinery in Arid Regions," Energies, MDPI, vol. 12(12), pages 1-13, June.
    17. Beata Brzychczyk & Jan Giełżecki & Krzysztof Kijanowski & Tomasz Hebda & Filip Rzepka, 2023. "Automation of the Photobioreactor Lighting System to Manage Light Distribution in Microalgae Cultures," Energies, MDPI, vol. 16(20), pages 1-20, October.
    18. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    19. Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
    20. Kirkow, Velizar & Wang, Hao & Garcia, Pablo Venegas & Ahmed, Shohel & Heggerud, Christopher M., 2022. "Impacts of a changing environment on a stoichiometric producer-grazer system: a stochastic modelling approach," Ecological Modelling, Elsevier, vol. 469(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424004852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.