IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v294y2024ics0378377424000568.html
   My bibliography  Save this article

Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation

Author

Listed:
  • Wang, Bo
  • Wang, Guiyan
  • van Dam, Jos
  • Yang, Xiaolin
  • Ritsema, Coen
  • Siddique, Kadambot H.M.
  • Du, Taisheng
  • Kang, Shaozhong

Abstract

The water-intensive conventional winter wheat–summer maize (WM) double cropping system in the North China Plain (NCP) has significantly decreased the groundwater table. To address this issue, we undertook a two-year field experiment to explore the potential and mechanisms of water-saving and yield increase of five newly designed diversified crop rotations incorporating spring crops (sweet potato, soybean, peanut, spring maize, and millet) into cereal crops compared with the conventional WM (as control). The results revealed that the five diversified crop rotations significantly decreased annual actual crop evapotranspiration by 7–12% and net groundwater use by 21–31% compared to the conventional WM. Sweet potato and peanut-based rotations significantly enhanced annual average equivalent yields up to 32% and economic benefit (+50%, +7%) while improving water productivity by 24–68% compared to WM. Shallow-rooted crops (sweet potato, soybean, peanut, and millet), when used as the preceding crop, improved soil water storage in the 0–180 cm soil layer at the start of the succeeding wheat planting season by 3–9% compared to the conventional WM. These shallow-rooted crops mainly concentrated their root systems in the 0–120 cm soil water, particularly the top 80 cm, complementing the deeper root systems of wheat, which extended down to 180 cm. Consequently, this optimal soil water use regime in diversified crop rotations increased the leaf area index and aboveground biomass of the succeeding wheat and maize crops, increasing total grain yields by 4–11%. Thus, introducing shallowed-root annual crops as preceding crops to the current WM rotation is beneficial for decreasing irrigation inputs, enhancing overall crop productivity, and mitigating groundwater table decline in the NCP.

Suggested Citation

  • Wang, Bo & Wang, Guiyan & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Siddique, Kadambot H.M. & Du, Taisheng & Kang, Shaozhong, 2024. "Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation," Agricultural Water Management, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000568
    DOI: 10.1016/j.agwat.2024.108721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.