IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v286y2023ics0378377423002640.html
   My bibliography  Save this article

Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India

Author

Listed:
  • Kamdi, Prasad Jairam
  • Swain, Dillip Kumar
  • Wani, Suhas P.

Abstract

Change in rainfall pattern with longer dry period depletes soil water content (SWC) and incorrect sowing time adversely affects rainfed sorghum production in Semi-Arid Tropics (SATs). The present study was conducted to develop agricultural water management strategies for improving SWC and to evaluate sowing time as climate change agro-adaptations for sorghum production in SATs. The field experiments on two land-water management (flatbed, broad bed furrows (BBF)) and four nutrient management (application of macro-and micronutrients through combination of chemical and organic fertilizers) were conducted in 2014 and 2015 at International Crops Research Institute for the Semi-Arid Tropics, India. The average SWC in ‘BBF’ was higher over ‘flatbed’ by 0.90 cm and 1.06 cm in 0–30 cm soil depth, 0.67 cm and 1.02 cm in 30–60 cm depth, 0.51 cm and 0.84 cm in 60–90 cm depth and, 0.34 cm and 0.67 cm in 90–120 cm during 2014 and 2015, respectively. The SWC in BBF was higher over flatbed by 7.28% throughout 0–120 cm soil depth during longest dry period of 26 days in the year 2014. The simulation analyses using DSSAT Version 4.6 for Coupled Model Intercomparison Project Phase 5 with RCP 4.5 stated that postponing the normal sowing time (30 June) to 10 July resulted in lower grain yield reduction i.e. 14.75% in 2030 and 19.37% in 2050 as compared to base period (1988–2007) yield with normal sowing in Parbhani location of India. The BBF combined with macro-and micronutrients application through chemical fertilizer and postponing sowing time was found the effective climate change agro-adaptation strategies for improving sorghum production in SATs. This study indicates the need for desired policy orientation by the government to promote integrated land-water-nutrient management as the effective agro-adaptations to climate change in SATs.

Suggested Citation

  • Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002640
    DOI: 10.1016/j.agwat.2023.108399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    2. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    3. Klaij, M. C. & Vachaud, G., 1992. "Seasonal water balance of a sandy soil in Niger cropped with pearl millet, based on profile moisture measurements," Agricultural Water Management, Elsevier, vol. 21(4), pages 313-330, September.
    4. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    5. Patil, S. L. & Sheelavantar, M. N., 2004. "Effect of cultural practices on soil properties, moisture conservation and grain yield of winter sorghum (Sorghum bicolar L. Moench) in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 64(1), pages 49-67, January.
    6. Alexandratos, Nikos & Bruinsma, Jelle, 2012. "World agriculture towards 2030/2050: the 2012 revision," ESA Working Papers 288998, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    7. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    8. Pathak, P. & Sudi, R. & Wani, S.P. & Sahrawat, K.L., 2013. "Hydrological behavior of Alfisols and Vertisols in the semi-arid zone: Implications for soil and water management," Agricultural Water Management, Elsevier, vol. 118(C), pages 12-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    3. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    4. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    5. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    6. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    7. Choi, Hyung Sik & Entenmann, Steffen K., 2019. "Land in the EU for perennial biomass crops from freed-up agricultural land: A sensitivity analysis considering yields, diet, market liberalization and world food prices," Land Use Policy, Elsevier, vol. 82(C), pages 292-306.
    8. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    9. Samuel Levis & Andrew Badger & Beth Drewniak & Cynthia Nevison & Xiaolin Ren, 2018. "CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5," Climatic Change, Springer, vol. 146(3), pages 501-515, February.
    10. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    11. Meier, Sebastián & Moore, Francisca & Morales, Arturo & Jobet, Claudio & López-Olivari, Rafael & Aponte, Humberto & Cartes, Paula & Campos, Pedro & Khan, Naser, 2021. "Interactive role between phosphorus utilization efficiency and water use efficiency. A tool to categorize wheats co-adapted to water and phosphorus limiting conditions," Agricultural Water Management, Elsevier, vol. 248(C).
    12. Vasilii Erokhin & Alexander Esaulko & Elena Pismennaya & Evgeny Golosnoy & Olga Vlasova & Anna Ivolga, 2021. "Combined Impact of Climate Change and Land Qualities on Winter Wheat Yield in Central Fore-Caucasus: The Long-Term Retrospective Study," Land, MDPI, vol. 10(12), pages 1-28, December.
    13. Khanal, Uttam & Wilson, Clevo & Hoang, Vincent & Lee, Boon, 2015. "Autonomous adaptations to climate change and rice productivity: a case study of the Tanahun district, Nepal," MPRA Paper 106916, University Library of Munich, Germany.
    14. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
    15. Emilie Stokeld & Simon A. Croft & Jonathan M. H. Green & Christopher D. West, 2020. "Climate change, crops and commodity traders: subnational trade analysis highlights differentiated risk exposure," Climatic Change, Springer, vol. 162(2), pages 175-192, September.
    16. Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
    17. Rezwanul Parvez & Nazea Hasan Khan Chowdhury, 2020. "Weather and Crop Management Impact on Crop Yield Variability," Agriculture and Food Sciences Research, Asian Online Journal Publishing Group, vol. 7(1), pages 7-15.
    18. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    19. Xuan Yang & Zhan Tian & Laixiang Sun & Baode Chen & Francesco N. Tubiello & Yinlong Xu, 2017. "The impacts of increased heat stress events on wheat yield under climate change in China," Climatic Change, Springer, vol. 140(3), pages 605-620, February.
    20. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:286:y:2023:i:c:s0378377423002640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.