IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v274y2022ics0378377422005352.html
   My bibliography  Save this article

Adaptability of biogas slurry–water ratio and emitter types in biogas slurry drip irrigation system

Author

Listed:
  • Wang, Haitao
  • Wang, Jiandong
  • Wang, Chuanjuan
  • Wang, Shuji
  • Qiu, Xuefeng
  • Li, Guangyong

Abstract

Biogas slurry drip irrigation (BSDI) can not only save water, but also reduce the use of chemical fertilizers. Determining the appropriate biogas slurry–water ratio (BSWR) and emitter types can ensure long-term stable operation of systems. Therefore, this study proposes an obtaining the BSWR suitable for crop irrigation conductivity method based on conductivity biogas slurry and clean water. The three conductivity levels(1.3, 2.3 and 3.3 mS/cm)are set based on their suitability for crop growth. The corresponding BSWR is determined using the proposed method, i.e.,1:20, 1:8, and 1:4. The clogging dynamic process, clogging location, and characteristic parameters are analyzed using a hydraulic test, an industrial camera and the ordered regression method for three common emitters under three BSWR. The results show that the proposed method relative error is approximately 10%, which is considered feasible. Over time, the discharge and uniformity of emitters decrease, and subsequently remain constant. As the slurry concentration increases, the emitters clog more rapidly, and internal patch emitters (IPEs) show the lowest adaptability to BSDI systems. The pressure compensation (PCEs) and single-wing labyrinth emitters (SWLEs) is better than IPEs on anti-clogging performance. Clogging mainly occurs at the inlet grid, and the SWLEs are clogged at the internal flow channel and outlet. Moreover, the inlet grid and pressure compensation are key characteristic parameters affecting clogging. The adaptability of emitters can be improved by changing the inlet grid layout, increasing the cross-sectional area of the flow channel, and/or reducing the pathway length. Based on irrigation uniformity and economic cost, large discharge SWLEs and PCEs are recommended for one-time field crops and multi-year cash crops respectively. Furthermore, the BSWR should be at least 1:4, and ratios of 1:8–1:20 are most conducive to stable operation. This study serves as a guideline for future development of BSDI systems.

Suggested Citation

  • Wang, Haitao & Wang, Jiandong & Wang, Chuanjuan & Wang, Shuji & Qiu, Xuefeng & Li, Guangyong, 2022. "Adaptability of biogas slurry–water ratio and emitter types in biogas slurry drip irrigation system," Agricultural Water Management, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005352
    DOI: 10.1016/j.agwat.2022.107988
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422005352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Kizito & Hongzhen Luo & Jiaxin Lu & Hamidou Bah & Renjie Dong & Shubiao Wu, 2019. "Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    2. Yin, Gaofei & Wang, Xiaofei & Du, Huiying & Shen, Shizhou & Liu, Canran & Zhang, Keqiang & Li, Wenchao, 2019. "N2O and CO2 emissions, nitrogen use efficiency under biogas slurry irrigation: A field study of two consecutive wheat-maize rotation cycles in the North China Plain," Agricultural Water Management, Elsevier, vol. 212(C), pages 232-240.
    3. Du, Huiying & Gao, Wenxuan & Li, Jiajia & Shen, Shizhou & Wang, Feng & Fu, Li & Zhang, Keqiang, 2019. "Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 882-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    2. Han, Jichong & Zhang, Zhao & Luo, Yuchuan & Cao, Juan & Zhang, Liangliang & Zhuang, Huimin & Cheng, Fei & Zhang, Jing & Tao, Fulu, 2022. "Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020," Agricultural Systems, Elsevier, vol. 200(C).
    3. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    4. Jiri Holatko & Tereza Hammerschmiedt & Antonin Kintl & Subhan Danish & Petr Skarpa & Oldrich Latal & Tivadar Baltazar & Shah Fahad & Hanife Akça & Suleyman Taban & Eliska Kobzova & Rahul Datta & Ondre, 2021. "Effect of carbon-enriched digestate on the microbial soil activity," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-13, July.
    5. Bangxi Zhang & Rongxiu Yin & Quanquan Wei & Song Qin & Yutao Peng & Baige Zhang, 2022. "Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil," Sustainability, MDPI, vol. 14(13), pages 1-10, June.
    6. Rizwan Yaseen & Omar Aziz & Muhammad Hamzah Saleem & Muhammad Riaz & Muhammad Zafar-ul-Hye & Muzammal Rehman & Shafaqat Ali & Muhammad Rizwan & Mohammed Nasser Alyemeni & Hamed A. El-Serehy & Fahad A., 2020. "Ameliorating the Drought Stress for Wheat Growth through Application of ACC-Deaminase Containing Rhizobacteria along with Biogas Slurry," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    7. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    8. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    9. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    10. Ye, Tianyang & Ma, Jifeng & Zhang, Pei & Shan, Song & Liu, Leilei & Tang, Liang & Cao, Weixing & Liu, Bing & Zhu, Yan, 2022. "Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Mona Mijthab & Raluca Anisie & Omar Crespo, 2021. "Mosan: Combining Circularity and Participatory Design to Address Sanitation in Low-Income Communities," Circular Economy and Sustainability,, Springer.
    12. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Mukhtar Ahmed & Shakeel Ahmad & Fayyaz-ul-Hassan & Ghulam Qadir & Rifat Hayat & Farid Asif Shaheen & Muhammad Ali Raza, 2019. "Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    14. Pengcheng Wang & Siyuan Jin & Henglin Xiao & Zhi Zhang & Cheng Hu & Yan Qiao & Donghai Liu & Xifa Guo & Xiangrong Peng, . "Effects of combined application of animal slurry and mineral fertiliser on rice yield and soil nitrogen cycle microbes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    15. Muhammad Aon & Zeshan Aslam & Shahid Hussain & Muhammad Amjad Bashir & Muhammad Shaaban & Sajid Masood & Sidra Iqbal & Muhammad Khalid & Abdur Rehim & Walid F. A. Mosa & Lidia Sas-Paszt & Samy A. Mare, 2023. "Wheat Straw Biochar Produced at a Low Temperature Enhanced Maize Growth and Yield by Influencing Soil Properties of Typic calciargid," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    16. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    17. Md Arifur Rahaman & Xiaoying Zhan & Qingwen Zhang & Shuqin Li & Shengmei Lv & Yuting Long & Hailing Zeng, 2020. "Ammonia Volatilization Reduced by Combined Application of Biogas Slurry and Chemical Fertilizer in Maize–Wheat Rotation System in North China Plain," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    18. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Fiza Pir Dad & Waqas-ud-Din Khan & Mohsin Tanveer & Pia Muhammad Adnan Ramzani & Rabia Shaukat & Abdul Muktadir, 2020. "Influence of Iron-Enriched Biochar on Cd Sorption, Its Ionic Concentration and Redox Regulation of Radish under Cadmium Toxicity," Agriculture, MDPI, vol. 11(1), pages 1-19, December.
    20. Carla Scotti & Chiara Bertora & Massimo Valagussa & Lamberto Borrelli & Giovanni Cabassi & Alberto Tosca, 2022. "Agroenvironmental Performances of Biochar Application in the Mineral and Organic Fertilization Strategies of a Maize–Ryegrass Forage System," Agriculture, MDPI, vol. 12(7), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.