IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252262.html
   My bibliography  Save this article

Effect of carbon-enriched digestate on the microbial soil activity

Author

Listed:
  • Jiri Holatko
  • Tereza Hammerschmiedt
  • Antonin Kintl
  • Subhan Danish
  • Petr Skarpa
  • Oldrich Latal
  • Tivadar Baltazar
  • Shah Fahad
  • Hanife Akça
  • Suleyman Taban
  • Eliska Kobzova
  • Rahul Datta
  • Ondrej Malicek
  • Ghulam Sabir Hussain
  • Martin Brtnicky

Abstract

Objectives: As a liquid organic fertilizer used in agriculture, digestate is rich in many nutrients (i.e. nitrogen, phosphorus, sulfur, calcium, potassium); their utilization may be however less efficient in soils poor in organic carbon (due to low carbon:nitrogen ratio). In order to solve the disadvantages, digestate enrichment with carbon-rich amendments biochar or humic acids (Humac) was tested. Methods: Soil variants amended with enriched digestate: digestate + biochar, digestate + Humac, and digestate + combined biochar and humic acids—were compared to control with untreated digestate in their effect on total soil carbon and nitrogen, microbial biomass carbon, soil respiration and soil enzymatic activities in a pot experiment. Yield of the test crop lettuce was also determined for all variants. Results: Soil respiration was the most significantly increased property, positively affected by digestate + Humac. Both digestate + biochar and digestate + Humac significantly increased microbial biomass carbon. Significant negative effect of digestate + biochar (compared to the control digestate) on particular enzyme activities was alleviated by the addition of humic acids. No significant differences among the tested variants were found in the above-ground and root plant biomass. Conclusions: The tested organic supplements improved the digestate effect on some determined soil properties. We deduced from the results (carbon:nitrogen ratio, microbial biomass and activity) that the assimilation of nutrients by plants increased; however, the most desired positive effect on the yield of crop biomass was not demonstrated. We assume that the digestate enrichment with organic amendments may be more beneficial in a long time-scaled trial.

Suggested Citation

  • Jiri Holatko & Tereza Hammerschmiedt & Antonin Kintl & Subhan Danish & Petr Skarpa & Oldrich Latal & Tivadar Baltazar & Shah Fahad & Hanife Akça & Suleyman Taban & Eliska Kobzova & Rahul Datta & Ondre, 2021. "Effect of carbon-enriched digestate on the microbial soil activity," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0252262
    DOI: 10.1371/journal.pone.0252262
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252262
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252262&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon Kizito & Hongzhen Luo & Jiaxin Lu & Hamidou Bah & Renjie Dong & Shubiao Wu, 2019. "Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    2. Jiri Holatko & Tereza Hammerschmiedt & Rahul Datta & Tivadar Baltazar & Antonin Kintl & Oldrich Latal & Vaclav Pecina & Petr Sarec & Petr Novak & Ludmila Balakova & Subhan Danish & Muhammad Zafar-ul-H, 2020. "Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    2. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    3. Wang, Haitao & Wang, Jiandong & Wang, Chuanjuan & Wang, Shuji & Qiu, Xuefeng & Li, Guangyong, 2022. "Adaptability of biogas slurry–water ratio and emitter types in biogas slurry drip irrigation system," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    5. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    6. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    7. Mona Mijthab & Raluca Anisie & Omar Crespo, 2021. "Mosan: Combining Circularity and Participatory Design to Address Sanitation in Low-Income Communities," Circular Economy and Sustainability,, Springer.
    8. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Mukhtar Ahmed & Shakeel Ahmad & Fayyaz-ul-Hassan & Ghulam Qadir & Rifat Hayat & Farid Asif Shaheen & Muhammad Ali Raza, 2019. "Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    10. Muhammad Aon & Zeshan Aslam & Shahid Hussain & Muhammad Amjad Bashir & Muhammad Shaaban & Sajid Masood & Sidra Iqbal & Muhammad Khalid & Abdur Rehim & Walid F. A. Mosa & Lidia Sas-Paszt & Samy A. Mare, 2023. "Wheat Straw Biochar Produced at a Low Temperature Enhanced Maize Growth and Yield by Influencing Soil Properties of Typic calciargid," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    11. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    12. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Fiza Pir Dad & Waqas-ud-Din Khan & Mohsin Tanveer & Pia Muhammad Adnan Ramzani & Rabia Shaukat & Abdul Muktadir, 2020. "Influence of Iron-Enriched Biochar on Cd Sorption, Its Ionic Concentration and Redox Regulation of Radish under Cadmium Toxicity," Agriculture, MDPI, vol. 11(1), pages 1-19, December.
    14. Carla Scotti & Chiara Bertora & Massimo Valagussa & Lamberto Borrelli & Giovanni Cabassi & Alberto Tosca, 2022. "Agroenvironmental Performances of Biochar Application in the Mineral and Organic Fertilization Strategies of a Maize–Ryegrass Forage System," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    15. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    16. Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Maria L. Saru & Styliani Voutsadaki & Anna Kritikaki & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    17. Yuchao Bai & Jing Zhu & Baoyuan Deng & Haili Shi & Zongkang Wang & Dongfang Han & Jixian Duan & Dehan Wang, 2020. "Short-Term Effect of the Addition of Rice Husk Gasification Slag on the Movement and Transformation of Phosphorus in Different Soil Types," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    18. Farman Wali & Shahid Sardar & Muhammad Naveed & Muhammad Asif & Mohammad Tahsin Karimi Nezhad & Khurram Shehzad Baig & Mohsin Bashir & Adnan Mustafa, 2022. "Effect of Consecutive Application of Phosphorus-Enriched Biochar with Different Levels of P on Growth Performance of Maize for Two Successive Growing Seasons," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    19. Yossif Dady & Roslan Ismail & Hamdan Jol & Fatai Arolu, 2021. "Impact of Oil Palm Empty Fruit Bunch Biochar Enriched with Chicken Manure Extract on Phosphorus Retention in Sandy Soil," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
    20. Inga-Mareike Bach & Lisa Essich & Torsten Müller, 2021. "Efficiency of Recycled Biogas Digestates as Phosphorus Fertilizers for Maize," Agriculture, MDPI, vol. 11(6), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.