IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v259y2022ics0378377421005424.html
   My bibliography  Save this article

Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast

Author

Listed:
  • Helmers, M.J.
  • Abendroth, L.
  • Reinhart, B.
  • Chighladze, G.
  • Pease, L.
  • Bowling, L.
  • Youssef, M.
  • Ghane, E.
  • Ahiablame, L.
  • Brown, L.
  • Fausey, N.
  • Frankenberger, J.
  • Jaynes, D.
  • King, K.
  • Kladivko, E.
  • Nelson, K.
  • Strock, J.

Abstract

Controlled drainage (CD), sometimes called drainage water management, is a practice whereby the drainage system outflow is managed during specific periods to retain more water in the field. Although CD has been shown to reduce downstream nitrate-N (NO3--N) load, seasonal patterns have been less consistent which can potentially impact the effectiveness of conservation practices. The main objective of this study was to assess the regional and seasonal impact of conventional free drainage (FD) and CD on drainage flow and nitrate-N load. Using experimental data from ongoing and historical CD experiments across the Corn Belt and in North Carolina, we evaluated subsurface drain flow, nitrate-N load, and performance of CD systems. Across the data set and regions, there was little difference in annual flow from FD conditions. Seasonally, more northern and western sites experienced a greater percentage of the annual flow occurring in the spring. There was no nitrate-N concentration reduction with CD. Flow and nitrate-N load reductions with CD did not vary by plant hardiness zone across the region, but the season with the greatest reduction did shift from winter to spring moving north and west in the study area. Absolute flow reductions (in mm) were similar regardless of precipitation category. Consequently, the percent reduction was lower as the amount of precipitation (category) increased. Overall, this analysis found CD to be an effective practice for reducing drain flow and nitrate-N loading directly delivered by the drains to downstream water bodies across the region.

Suggested Citation

  • Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005424
    DOI: 10.1016/j.agwat.2021.107265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    4. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moursi, Hossam & Youssef, Mohamed A. & Poole, Chad A. & Castro-Bolinaga, Celso F. & Chescheir, George M. & Richardson, Robert J., 2023. "Drainage water recycling reduced nitrogen, phosphorus, and sediment losses from a drained agricultural field in eastern North Carolina, U.S.A," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Youssef, Mohamed A. & Strock, Jeffrey & Bagheri, Ehsan & Reinhart, Benjamin D. & Abendroth, Lori J. & Chighladze, Giorgi & Ghane, Ehsan & Shedekar, Vinayak & Fausey (Ret.), Norman R. & Frankenberger, , 2023. "Impact of controlled drainage on corn yield under varying precipitation patterns: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    2. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    4. Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    6. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    7. Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).
    8. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    9. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    10. Rong Tang & Xiugui Wang & Xudong Han & Yihui Yan & Shuang Huang & Jiesheng Huang & Tao Shen & Youzhen Wang & Jia Liu, 2022. "Effects of Combined Main Ditch and Field Ditch Control Measures on Crop Yield and Drainage Discharge in the Northern Huaihe River Plain, Anhui Province, China," Agriculture, MDPI, vol. 12(8), pages 1-25, August.
    11. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    12. Cherine Akkari & Christopher Robin Bryant, 2017. "Toward Improved Adoption of Best Management Practices (BMPs) in the Lake Erie Basin: Perspectives from Resilience and Agricultural Innovation Literature," Agriculture, MDPI, vol. 7(7), pages 1-15, July.
    13. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed," Agricultural Water Management, Elsevier, vol. 158(C), pages 42-50.
    14. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    15. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    16. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Yanmei Yu & Junzeng Xu & Pingcang Zhang & Yan Meng & Yujiang Xiong, 2021. "Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields," IJERPH, MDPI, vol. 18(7), pages 1-15, March.
    18. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    19. Grenon, Geneviève & De Sena, Aidan & Madramootoo, Chandra A. & von Sperber, Christian & Hamrani, Abderrachid, 2022. "Linking soil phosphorus pools to drainage water quality in intensively cropped organic soils," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Liu, Yu & Youssef, Mohamed A. & Chescheir, George M. & Appelboom, Timothy W. & Poole, Chad A. & Arellano, Consuelo & Skaggs, R. Wayne, 2019. "Effect of controlled drainage on nitrogen fate and transport for a subsurface drained grass field receiving liquid swine lagoon effluent," Agricultural Water Management, Elsevier, vol. 217(C), pages 440-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.