IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267736.html
   My bibliography  Save this article

Effects of modelling studies on controlled drainage in agricultural land on reduction of outflow and nitrate losses–a meta-analysis

Author

Listed:
  • Barbara Kęsicka
  • Rafał Stasik
  • Michał Kozłowski

Abstract

A review with meta-analysis of outflow and nitrate loss reduction in controlled drainage (CD) vs conventional, free drainage (FD) was carried out in the study. Since the results of experimental field studies usually cover short periods of data collection, hence in this paper, meta-analyses were based on model studies that usually cover a longer time range. The databases Web of Science and Scopus were searched for eligible English articles, published until December 2020, that describe the quantity and quality of drainage water. The meta-analysis of outflow and nitrate loss reduction in CD vs FD using the mean difference (MD) with a confidence interval (CI) of 95%. The influence of each study was measured through heterogeneity, sensitivity analyses and publication bias using STATISTICA (version 13.3) for all analyses. Of the 107 works identified, 18 were finally included in the analysis based on established criteria required for an appropriate meta-analysis. In general the results indicate a reduction in average drainage outflow of 30.5% (MD = -71.26 mm; 95% CI, -103.49 –-39.04; p = 0.000) in arable land with CD in comparison to FD practice. In the case of nitrate load the reduction was 33.61% and in the drainage water there was lower content in CD practice by an average of 8.36 kg NO3 ha-1year-1 (95% CI, -9.93 –-6.79; p = 0.000). Subgroup analysis of two meta-analyses indicates that the results concerning these associations may vary with the calculated weight for each article, in which the number of years of study had the most significant impact.

Suggested Citation

  • Barbara Kęsicka & Rafał Stasik & Michał Kozłowski, 2022. "Effects of modelling studies on controlled drainage in agricultural land on reduction of outflow and nitrate losses–a meta-analysis," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-21, April.
  • Handle: RePEc:plo:pone00:0267736
    DOI: 10.1371/journal.pone.0267736
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267736
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267736&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luo, W. & Sands, G.R. & Youssef, M. & Strock, J.S. & Song, I. & Canelon, D., 2010. "Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII," Agricultural Water Management, Elsevier, vol. 97(3), pages 389-398, March.
    2. Breve, M. A. & Skaggs, R. W. & Parsons, J. E. & Gilliam, J. W., 1998. "Using the DRAINMOD-N model to study effects of drainage system design and management on crop productivity, profitability and NO3-N losses in drainage water," Agricultural Water Management, Elsevier, vol. 35(3), pages 227-243, January.
    3. Wesstrom, Ingrid & Messing, Ingmar & Linner, Harry & Lindstrom, Jan, 2001. "Controlled drainage -- effects on drain outflow and water quality," Agricultural Water Management, Elsevier, vol. 47(2), pages 85-100, March.
    4. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    5. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    6. Lalonde, V. & Madramootoo, C. A. & Trenholm, L. & Broughton, R. S., 1996. "Effects of controlled drainage on nitrate concentrations in subsurface drain discharge," Agricultural Water Management, Elsevier, vol. 29(2), pages 187-199, January.
    7. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    8. Singh, Shailendra & Bhattarai, Rabin & Negm, Lamyaa M. & Youssef, Mohamed A. & Pittelkow, Cameron M., 2020. "Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Bonaiti, Gabriele & Borin, Maurizio, 2010. "Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields," Agricultural Water Management, Elsevier, vol. 98(2), pages 343-352, December.
    10. Mohammad Valipour & Jens Krasilnikof & Stavros Yannopoulos & Rohitashw Kumar & Jun Deng & Paolo Roccaro & Larry Mays & Mark E. Grismer & Andreas N. Angelakis, 2020. "The Evolution of Agricultural Drainage from the Earliest Times to the Present," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    11. Negm, Lamyaa M. & Youssef, Mohamed A. & Jaynes, Dan B., 2017. "Evaluation of DRAINMOD-DSSAT simulated effects of controlled drainage on crop yield, water balance, and water quality for a corn-soybean cropping system in central Iowa," Agricultural Water Management, Elsevier, vol. 187(C), pages 57-68.
    12. Wesstrom, Ingrid & Messing, Ingmar, 2007. "Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops," Agricultural Water Management, Elsevier, vol. 87(3), pages 229-240, February.
    13. Matsuo, Naoki & Takahashi, Masakazu & Yamada, Tetsuya & Takahashi, Motoki & Hajika, Makita & Fukami, Koichiro & Tsuchiya, Shinori, 2017. "Effects of water table management and row width on the growth and yield of three soybean cultivars in southwestern Japan," Agricultural Water Management, Elsevier, vol. 192(C), pages 85-97.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    2. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    3. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    6. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    7. Bohne, B. & Storchenegger, I.J. & Widmoser, P., 2012. "An easy to use calculation method for weir operations in controlled drainage systems," Agricultural Water Management, Elsevier, vol. 109(C), pages 46-53.
    8. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    10. Singh, Shailendra & Bhattarai, Rabin & Negm, Lamyaa M. & Youssef, Mohamed A. & Pittelkow, Cameron M., 2020. "Evaluation of nitrogen loss reduction strategies using DRAINMOD-DSSAT in east-central Illinois," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Shokrana, Md Sami Bin & Ghane, Ehsan & Abdalaal, Yousef & Nejadhashemi, A. Pouyan, 2023. "Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Gunn, Kpoti M. & Fausey, Norman R. & Shang, Yuhui & Shedekar, Vinayak S. & Ghane, Ehsan & Wahl, Mark D. & Brown, Larry C., 2015. "Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA," Agricultural Water Management, Elsevier, vol. 149(C), pages 131-142.
    13. Tolomio, Massimo & Borin, Maurizio, 2019. "Controlled drainage and crop production in a long-term experiment in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 21-29.
    14. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    15. Kröger, R. & Cooper, C.M. & Moore, M.T., 2008. "A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs," Agricultural Water Management, Elsevier, vol. 95(6), pages 678-684, June.
    16. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    17. Deichmann, Majken M. & Andersen, Mathias N. & Thomsen, Ingrid K. & Børgesen, Christen D., 2019. "Impacts of controlled drainage during winter on the physiology and yield of winter wheat in Denmark," Agricultural Water Management, Elsevier, vol. 216(C), pages 118-126.
    18. Littlejohn, K.A. & Poganski, B.H. & Kröger, R. & Ramirez-Avila, J.J., 2014. "Effectiveness of low-grade weirs for nutrient removal in an agricultural landscape in the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 131(C), pages 79-86.
    19. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    20. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.