IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003992.html
   My bibliography  Save this article

Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate

Author

Listed:
  • Shokrana, Md Sami Bin
  • Ghane, Ehsan
  • Abdalaal, Yousef
  • Nejadhashemi, A. Pouyan

Abstract

Subsurface drainage in humid areas prevents field waterlogging but also transports nutrients to freshwater systems. Controlled drainage (CD) reduces drainage discharge and nutrient transport from fields. Some regions are expected to experience increased precipitation in the future, requiring CD to be evaluated under a changing climate. The objective of this study was to compare the performance of CD under two weir managements for a future period (2030–2059) and historical period (1992-2021) in southeast Michigan, USA. Climate projections were obtained for the shared socioeconomic pathway 245 emission scenario. Aggressive management involved maintaining the weir height at 40 cm during the growing season and 15 cm during the non-growing season, with a longer period of managed flow compared to common management, which maintained the weir height at 50 cm during the growing season and 30 cm during the non-growing season. It was predicted that the 30-year average annual precipitation would not change significantly in the future. The 30-year average mean monthly temperature would increase by 3.0°C in the future compared to the historical period. We performed simulations using the calibrated Root Zone Water Quality Model 2 (RZWQM2). The average drainage discharge in the future indicated a 20% increase in the 30-year average drainage discharge for a field with free drainage. The CD with common and aggressive managements reduced drainage discharge by 59% and 67% for the historical period, whereas the performance of CD was even better for the future period (63% and 72%, respectively). The improved future performance of CD can be attributed to a shift in precipitation patterns, with reduced precipitation during the growing season and increased precipitation during the non-growing season. As a result, the more aggressive weir management during this period created additional opportunities for reducing drainage discharge. In conclusion, aggressive management resulted in a slightly better flow-reducing performance than common management while indicating that both methods would effectively reduce drainage discharge in the likely future scenario.

Suggested Citation

  • Shokrana, Md Sami Bin & Ghane, Ehsan & Abdalaal, Yousef & Nejadhashemi, A. Pouyan, 2023. "Predicting the effect of weir management on the discharge of a controlled drainage system in a changing climate," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003992
    DOI: 10.1016/j.agwat.2023.108534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.