IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377419302367.html
   My bibliography  Save this article

Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches

Author

Listed:
  • Shedekar, Vinayak S.
  • King, Kevin W.
  • Fausey, Norman R.
  • Islam, Khandakar R.
  • Soboyejo, Alfred B.O.
  • Kalcic, Margaret M.
  • Brown, Larry C.

Abstract

Subsurface (tile) drainage is a necessary practice for economic crop production in humid, poorly drained regions of the world. Drainage water management (DWM), also known as controlled drainage, is among the suite of practices designed to mitigate water quality issues associated with subsurface drainage. Studies evaluating DWM generally include field experiments or simulation models to estimate water quality impacts. Combining field studies with model simulations can provide a more comprehensive assessment. Furthermore, using multiple approaches can provide a range of effectiveness rather than a single estimate, which can help define the uncertainty associated with DWM effectiveness. The goal of this study was to demonstrate the variability in estimated DWM effectiveness using 10 years of measured data and a calibrated hydrologic model. The study field, located in central Ohio, was under a free drainage (FD) mode from 2005 through 2008, and under DWM from 2009 through 2014. We used three approaches to compare discharge and nitrate concentrations and loads: before-and-after, paired-field, and DRAINMOD-NII simulated scenarios. Based on the three evaluation approaches, DWM increased surface runoff by 50% (∼13 mm), reduced annual drainage discharge between 8 and 23% (∼19 to 69 mm), annual mean NO3-N concentrations between −1 and 2.5%, and NO3-N loads between 9 and 25% (∼2.8 to 10.3 kg ha−1 yr−1). DWM also reduced the frequency of drainage discharge, and increased magnitudes of surface runoff, evapotranspiration, and seepage losses. The true magnitude of DWM effectiveness remains somewhat uncertain, especially in fields prone to seepage and runoff losses. However, using a combined assessment approach can help address the uncertainty associated with estimated DWM effectiveness at watershed and regional scales.

Suggested Citation

  • Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419302367
    DOI: 10.1016/j.agwat.2020.106501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    2. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    3. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    4. Liu, Yu & Youssef, Mohamed A. & Chescheir, George M. & Appelboom, Timothy W. & Poole, Chad A. & Arellano, Consuelo & Skaggs, R. Wayne, 2019. "Effect of controlled drainage on nitrogen fate and transport for a subsurface drained grass field receiving liquid swine lagoon effluent," Agricultural Water Management, Elsevier, vol. 217(C), pages 440-451.
    5. Youssef, Mohamed A. & Abdelbaki, Ahmed M. & Negm, Lamyaa M. & Skaggs, R.Wayne & Thorp, Kelly R. & Jaynes, Dan B., 2018. "DRAINMOD-simulated performance of controlled drainage across the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 197(C), pages 54-66.
    6. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    7. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    8. Lalonde, V. & Madramootoo, C. A. & Trenholm, L. & Broughton, R. S., 1996. "Effects of controlled drainage on nitrate concentrations in subsurface drain discharge," Agricultural Water Management, Elsevier, vol. 29(2), pages 187-199, January.
    9. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    10. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    11. Macrae, M.L. & English, M.C. & Schiff, S.L. & Stone, M., 2007. "Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment," Agricultural Water Management, Elsevier, vol. 92(3), pages 171-182, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rares Halbac-Cotoara-Zamfir & Asdrubal Jesus Farias-Ramirez & Jarbas Honorio de Miranda & Maria Alejandra Moreno-Pizani & Sergio Nascimento Duarte & Franklin Javier Paredes-Trejo & Luca Salvati & Cris, 2022. "Simulation of Subsurface Drainage in the Sugarcane Crop under Different Spacing and Drain Depths," Land, MDPI, vol. 11(5), pages 1-20, April.
    2. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    3. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Renji Remesan & Arjun Prabhakaran & Macariush N. Sangma & Sreekanth Janardhanan & Mohammed Mainuddin & Sukanta K. Sarangi & Uttam Kumar Mandal & Dhiman Burman & Sukamal Sarkar & Kshirenda Kumar Mahant, 2021. "Modeling and Management Option Analysis for Saline Groundwater Drainage in a Deltaic Island," Sustainability, MDPI, vol. 13(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    2. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    3. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Ross, Jared A. & Herbert, Matthew E. & Sowa, Scott P. & Frankenberger, Jane R. & King, Kevin W. & Christopher, Sheila F. & Tank, Jennifer L. & Arnold, Jeffrey G. & White, Mike J. & Yen, Haw, 2016. "A synthesis and comparative evaluation of factors influencing the effectiveness of drainage water management," Agricultural Water Management, Elsevier, vol. 178(C), pages 366-376.
    5. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    6. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    7. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Youssef, Mohamed A. & Liu, Yu & Chescheir, George M. & Skaggs, R. Wayne & Negm, Lamyaa M., 2021. "DRAINMOD modeling framework for simulating controlled drainage effect on lateral seepage from artificially drained fields," Agricultural Water Management, Elsevier, vol. 254(C).
    9. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    11. Golmohammadi, Golmar & Rudra, Ramesh & Prasher, Shiv & Madani, Ali & Youssef, Mohamed & Goel, Pradeep & Mohammadi, Kourosh, 2017. "Impact of tile drainage on water budget and spatial distribution of sediment generating areas in an agricultural watershed," Agricultural Water Management, Elsevier, vol. 184(C), pages 124-134.
    12. Ale, S. & Bowling, L.C. & Owens, P.R. & Brouder, S.M. & Frankenberger, J.R., 2012. "Development and application of a distributed modeling approach to assess the watershed-scale impact of drainage water management," Agricultural Water Management, Elsevier, vol. 107(C), pages 23-33.
    13. Liu, Yu & Youssef, Mohamed A. & Chescheir, George M. & Appelboom, Timothy W. & Poole, Chad A. & Arellano, Consuelo & Skaggs, R. Wayne, 2019. "Effect of controlled drainage on nitrogen fate and transport for a subsurface drained grass field receiving liquid swine lagoon effluent," Agricultural Water Management, Elsevier, vol. 217(C), pages 440-451.
    14. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    15. Lavaire, Tito & Gentry, Lowell E. & David, Mark B. & Cooke, Richard A., 2017. "Fate of water and nitrate using drainage water management on tile systems in east-central Illinois," Agricultural Water Management, Elsevier, vol. 191(C), pages 218-228.
    16. Helmers, M.J. & Abendroth, L. & Reinhart, B. & Chighladze, G. & Pease, L. & Bowling, L. & Youssef, M. & Ghane, E. & Ahiablame, L. & Brown, L. & Fausey, N. & Frankenberger, J. & Jaynes, D. & King, K. &, 2022. "Impact of controlled drainage on subsurface drain flow and nitrate load: A synthesis of studies across the U.S. Midwest and Southeast," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    18. Liu, Wenlong & Youssef, Mohamed A. & Birgand, François P. & Chescheir, George M. & Tian, Shiying & Maxwell, Bryan M., 2020. "Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements," Agricultural Water Management, Elsevier, vol. 232(C).
    19. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed," Agricultural Water Management, Elsevier, vol. 158(C), pages 42-50.
    20. Molder, Bryce & Cockburn, Jaclyn & Berg, Aaron & Lindsay, John & Woodrow, Kathryn, 2015. "Sediment-assisted nutrient transfer from a small, no-till, tile drained watershed in Southwestern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 152(C), pages 31-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419302367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.