IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp159-170.html
   My bibliography  Save this article

Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water

Author

Listed:
  • Sunohara, Mark D.
  • Gottschall, Natalie
  • Craiovan, Emilia
  • Wilkes, Graham
  • Topp, Edward
  • Frey, Steven K.
  • Lapen, David R.

Abstract

Drainage water management such as controlled tile drainage (CTD) is one means to help meet pollution mitigation targets and boost crop yields. In this study, CTD was retrofit to existing tile drained fields in eastern Ontario, Canada (humid continental climate) to study water quality benefits. A suite of paired field systems were used to compare CTD tile drainage quality with conventional tile drainage quality for nine growing seasons (2005–2013), translating to 35 field-crop years. Field crops were corn, soybean and forage. For CTD fields, controlled tile drainage was employed only during the growing season (time period when comparisons were made) due to surface runoff/erosion and growing season length concerns associated with non-growing season flow control. Water quality targets in tile effluent included: nitrate, ammonium, total phosphorus, dissolved reactive phosphorus, and fecal indicator bacteria such as E. coli, and Enterococci. Respectively, there were 60, 51, 58, 66, 66, 76, and 25% reductions in above noted drainage water fluxes and water quality targets as a result of CTD (for all 35 field-crop years combined). Concurrent environmental and potential public health benefits of managing tile drainage during the growing season were demonstrated; moreover, over the course of the study, corn and soybean yields were significantly boosted by CTD.

Suggested Citation

  • Sunohara, Mark D. & Gottschall, Natalie & Craiovan, Emilia & Wilkes, Graham & Topp, Edward & Frey, Steven K. & Lapen, David R., 2016. "Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water," Agricultural Water Management, Elsevier, vol. 178(C), pages 159-170.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:159-170
    DOI: 10.1016/j.agwat.2016.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, D.R. & Haggard, B.E. & Warnemuende, E.A. & Huang, C., 2005. "Sediment phosphorus dynamics for three tile fed drainage ditches in Northeast Indiana," Agricultural Water Management, Elsevier, vol. 71(1), pages 19-32, January.
    2. Sanchez Valero, Caroline & Madramootoo, Chandra A. & Stampfli, Nicolas, 2007. "Water table management impacts on phosphorus loads in tile drainage," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 71-80, April.
    3. Ball Coelho, B. & Murray, R. & Lapen, D. & Topp, E. & Bruin, A., 2012. "Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 51-61.
    4. Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
    5. Mejia, M. N. & Madramootoo, C. A. & Broughton, R. S., 2000. "Influence of water table management on corn and soybean yields," Agricultural Water Management, Elsevier, vol. 46(1), pages 73-89, November.
    6. Ball Coelho, B. & Lapen, D. & Murray, R. & Topp, E. & Bruin, A. & Khan, B., 2012. "Nitrogen loading to offsite waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 40-50.
    7. Littlejohn, K.A. & Poganski, B.H. & Kröger, R. & Ramirez-Avila, J.J., 2014. "Effectiveness of low-grade weirs for nutrient removal in an agricultural landscape in the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 131(C), pages 79-86.
    8. Wesstrom, Ingrid & Messing, Ingmar, 2007. "Effects of controlled drainage on N and P losses and N dynamics in a loamy sand with spring crops," Agricultural Water Management, Elsevier, vol. 87(3), pages 229-240, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youngseok Song & Moojong Park, 2021. "A Study on the Development of Reduction Facilities’ Management Standards for Agricultural Drainage for Disaster Reduction," Sustainability, MDPI, vol. 13(17), pages 1-15, August.
    2. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    3. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    4. Wang, Zhiyu & Shao, Guangcheng & Lu, Jia & Zhang, Kun & Gao, Yang & Ding, Jihui, 2020. "Effects of controlled drainage on crop yield, drainage water quantity and quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Lilian Ding & Qiyao Li & Jianjun Tang & Jiangfei Wang & Xin Chen, 2019. "Linking Land Use Metrics Measured in Aquatic–Terrestrial Interfaces to Water Quality of Reservoir-Based Water Sources in Eastern China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    6. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    7. King, K.W. & Hanrahan, B.R. & Stinner, J. & Shedekar, V.S., 2022. "Field scale discharge and water quality response, to drainage water management," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Van Zandvoort, Alisha & Clark, Ian D. & Flemming, Corey & Craiovan, Emilia & Sunohara, Mark D. & Gottschall, Natalie & Boutz, Ronda & Lapen, David R., 2017. "Using 13C isotopic analysis to assess soil carbon pools associated with tile drainage management during drier and wetter growing seasons," Agricultural Water Management, Elsevier, vol. 192(C), pages 232-243.
    9. Wu, Bingfang & Ma, Zonghan & Boken, Vijendra K. & Zeng, Hongwei & Shang, Jiali & Igor, Savin & Wang, Jinxia & Yan, Nana, 2022. "Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Jiang, Qianjing & Qi, Zhiming & Lu, Cheng & Tan, Chin S. & Zhang, Tiequan & Prasher, Shiv O., 2020. "Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario," Agricultural Water Management, Elsevier, vol. 237(C).
    11. Sławomir Bajkowski & Janusz Urbański & Ryszard Oleszczuk & Piotr Siwicki & Andrzej Brandyk & Zbigniew Popek, 2022. "Modular Regulators of Water Level in Ditches of Subirrigation Systems," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    12. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    13. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    2. Van Zandvoort, Alisha & Clark, Ian D. & Flemming, Corey & Craiovan, Emilia & Sunohara, Mark D. & Gottschall, Natalie & Boutz, Ronda & Lapen, David R., 2017. "Using 13C isotopic analysis to assess soil carbon pools associated with tile drainage management during drier and wetter growing seasons," Agricultural Water Management, Elsevier, vol. 192(C), pages 232-243.
    3. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    4. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    5. Liu, Jian & Elliott, Jane A. & Wilson, Henry F. & Macrae, Merrin L. & Baulch, Helen M. & Lobb, David A., 2021. "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Cicek, H. & Sunohara, M. & Wilkes, G. & McNairn, H. & Pick, F. & Topp, E. & Lapen, D.R., 2010. "Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage," Agricultural Water Management, Elsevier, vol. 98(2), pages 261-270, December.
    7. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    8. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Drainage water management effects on tile discharge and water quality," Agricultural Water Management, Elsevier, vol. 148(C), pages 43-51.
    9. Lu, Shenglan & Andersen​, Hans Estrup & Thodsen, Hans & Rubæk, Gitte Holton & Trolle, Dennis, 2016. "Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments," Agricultural Water Management, Elsevier, vol. 175(C), pages 78-90.
    10. Nazari, Saeid & Ford, William I. & King, Kevin W., 2022. "Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Jia, Z. & Yin, X. & Luo, W. & Zou, J. & Chen, C., 2021. "New indexes to evaluate the effect of segmental variations of distributed ditches on their pollutant retention in agricultural landscapes," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
    13. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Lozier, T.M. & Macrae, M.L. & Brunke, R. & Van Eerd, L.L., 2017. "Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region," Agricultural Water Management, Elsevier, vol. 189(C), pages 39-51.
    15. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    16. Daly, K. & Tuohy, P. & Peyton, D. & Wall, D.P. & Fenton, O., 2017. "Field soil and ditch sediment phosphorus dynamics from two artificially drained fields on poorly drained soils," Agricultural Water Management, Elsevier, vol. 192(C), pages 115-125.
    17. Giovani Preza-Fontes & Junming Wang & Muhammad Umar & Meilan Qi & Kamaljit Banger & Cameron Pittelkow & Emerson Nafziger, 2021. "Development of an Online Tool for Tracking Soil Nitrogen to Improve the Environmental Performance of Maize Production," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    18. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    19. Sanchez Valero, Caroline & Madramootoo, Chandra A. & Stampfli, Nicolas, 2007. "Water table management impacts on phosphorus loads in tile drainage," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 71-80, April.
    20. Shao, Guangcheng & Cui, Jintao & Yu, Shuang’en & Lu, Bin & Brian, Boman J. & Ding, Jihui & She, Dongli, 2015. "Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice," Agricultural Water Management, Elsevier, vol. 149(C), pages 156-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:159-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.