IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v189y2017icp39-51.html
   My bibliography  Save this article

Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region

Author

Listed:
  • Lozier, T.M.
  • Macrae, M.L.
  • Brunke, R.
  • Van Eerd, L.L.

Abstract

In northern climates, crop residue and cover crops are potential sources of dissolved reactive phosphorus (DRP) to runoff; yet, there are few field studies to quantify this. The objectives of this study were (1) to quantify changes in water extractable phosphorus (WEP) concentrations in the residues of Triticum aestivum L. (winter wheat), Trifolium pretense L. (red clover) and Avena sativa L. (oat) cover crops and surface soil in two agricultural fields (ILD and LON) over the non-growing season (NGS); and (2) to determine if changes in WEP in vegetation residue or soil were reflected in loads of DRP or total P (TP) in surface runoff and/or tile drain effluent. Concentrations of WEP in cover crops were larger than those in wheat residue and soil. Water extractable P concentrations in vegetation increased with plant decomposition and decreased following runoff events indicating that the plant WEP was mobilized in runoff. Differences in WEP concentrations were not observed with topography, with the exception of the period following snowmelt when low-lying areas prone to surface inundation were depleted relative to upland locations. Although WEP appeared to have been mobilized from vegetation and soil pools, loads of DRP (0.165–0.245kgha−1) and TP (0.295kgha−1–0.360kgha−1) leaving the fields were small in comparison to P pools in cover crops (7.70kgha−1 oat, 1.70kgha−1 red clover), wheat residues (0.03–0.06kgha−1) and soils (1.39–5.87kgha−1), suggesting that much of the P released from vegetation was retained within the field. This study provides insight into the timing and magnitude of P release from vegetation throughout the non-growing season in regions with cool temperate climates, and provides an improved understanding of the contribution of cover crops to winter P losses.

Suggested Citation

  • Lozier, T.M. & Macrae, M.L. & Brunke, R. & Van Eerd, L.L., 2017. "Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region," Agricultural Water Management, Elsevier, vol. 189(C), pages 39-51.
  • Handle: RePEc:eee:agiwat:v:189:y:2017:i:c:p:39-51
    DOI: 10.1016/j.agwat.2017.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417301579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, J.J. & van Bochove, E. & Thériault, G. & Novotna, B. & Khaldoune, J. & Denault, J.T. & Zhou, J. & Nolin, M.C. & Hu, C.X. & Bernier, M. & Benoy, G. & Xing, Z.S. & Chow, L., 2011. "Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada," Agricultural Water Management, Elsevier, vol. 98(5), pages 867-876, March.
    2. Ball Coelho, B. & Murray, R. & Lapen, D. & Topp, E. & Bruin, A., 2012. "Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 51-61.
    3. Eastman, M. & Gollamudi, A. & Stämpfli, N. & Madramootoo, C.A. & Sarangi, A., 2010. "Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 596-604, May.
    4. Ball Coelho, B. & Lapen, D. & Murray, R. & Topp, E. & Bruin, A. & Khan, B., 2012. "Nitrogen loading to offsite waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 40-50.
    5. Macrae, M.L. & English, M.C. & Schiff, S.L. & Stone, M., 2007. "Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment," Agricultural Water Management, Elsevier, vol. 92(3), pages 171-182, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jian & Elliott, Jane A. & Wilson, Henry F. & Macrae, Merrin L. & Baulch, Helen M. & Lobb, David A., 2021. "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Zohreh Hashemi Aslani & Vahid Nasiri & Carmen Maftei & Ashok Vaseashta, 2023. "Synergetic Integration of SWAT and Multi-Objective Optimization Algorithms for Evaluating Efficiencies of Agricultural Best Management Practices to Improve Water Quality," Land, MDPI, vol. 12(2), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    2. Nazari, Saeid & Ford, William I. & King, Kevin W., 2022. "Impact of flow pathway and source water connectivity on subsurface sediment and particulate phosphorus dynamics in tile-drained agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Liu, Jian & Elliott, Jane A. & Wilson, Henry F. & Macrae, Merrin L. & Baulch, Helen M. & Lobb, David A., 2021. "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    5. Van Zandvoort, Alisha & Clark, Ian D. & Flemming, Corey & Craiovan, Emilia & Sunohara, Mark D. & Gottschall, Natalie & Boutz, Ronda & Lapen, David R., 2017. "Using 13C isotopic analysis to assess soil carbon pools associated with tile drainage management during drier and wetter growing seasons," Agricultural Water Management, Elsevier, vol. 192(C), pages 232-243.
    6. Lu, Shenglan & Andersen​, Hans Estrup & Thodsen, Hans & Rubæk, Gitte Holton & Trolle, Dennis, 2016. "Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments," Agricultural Water Management, Elsevier, vol. 175(C), pages 78-90.
    7. Christianson, L.E. & Harmel, R.D., 2015. "The MANAGE Drain Load database: Review and compilation of more than fifty years of North American drainage nutrient studies," Agricultural Water Management, Elsevier, vol. 159(C), pages 277-289.
    8. Sunohara, Mark D. & Gottschall, Natalie & Craiovan, Emilia & Wilkes, Graham & Topp, Edward & Frey, Steven K. & Lapen, David R., 2016. "Controlling tile drainage during the growing season in Eastern Canada to reduce nitrogen, phosphorus, and bacteria loading to surface water," Agricultural Water Management, Elsevier, vol. 178(C), pages 159-170.
    9. Pengfei Yu & Tianxiao Li & Qiang Fu & Dong Liu & Renjie Hou & Hang Zhao, 2021. "Effect of Biochar on Soil and Water Loss on Sloping Farmland in the Black Soil Region of Northeast China during the Spring Thawing Period," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    10. Allred, Barry & Martinez, Luis & Khanal, Sami & Sawyer, Audrey H. & Rouse, Greg, 2022. "Subsurface drainage outlet detection in ditches and streams with UAV thermal infrared imagery: Preliminary research," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Ball Coelho, B. & Lapen, D. & Murray, R. & Topp, E. & Bruin, A. & Khan, B., 2012. "Nitrogen loading to offsite waters from liquid swine manure application under different drainage and tillage practices," Agricultural Water Management, Elsevier, vol. 104(C), pages 40-50.
    12. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    13. Williams, M.R. & King, K.W. & Fausey, N.R., 2015. "Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed," Agricultural Water Management, Elsevier, vol. 158(C), pages 42-50.
    14. Nausch, Monika & Woelk, Jana & Kahle, Petra & Nausch, Günther & Leipe, Thomas & Lennartz, Bernd, 2017. "Phosphorus fractions in discharges from artificially drained lowland catchments (Warnow River, Baltic Sea)," Agricultural Water Management, Elsevier, vol. 187(C), pages 77-87.
    15. Shedekar, Vinayak S. & King, Kevin W. & Fausey, Norman R. & Islam, Khandakar R. & Soboyejo, Alfred B.O. & Kalcic, Margaret M. & Brown, Larry C., 2021. "Exploring the effectiveness of drainage water management on water budgets and nitrate loss using three evaluation approaches," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Molder, Bryce & Cockburn, Jaclyn & Berg, Aaron & Lindsay, John & Woodrow, Kathryn, 2015. "Sediment-assisted nutrient transfer from a small, no-till, tile drained watershed in Southwestern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 152(C), pages 31-40.
    17. Williams, Mark R. & King, Kevin W. & Fausey, Norman R., 2017. "Dissolved organic carbon loading from the field to watershed scale in tile-drained landscapes," Agricultural Water Management, Elsevier, vol. 192(C), pages 159-169.
    18. Hertzberger, A. & Pittelkow, C.M. & Harmel, R.D. & Christianson, L.E., 2019. "The MANAGE Drain Concentration database: A new tool compiling North American drainage nutrient concentrations," Agricultural Water Management, Elsevier, vol. 216(C), pages 113-117.
    19. Askar, Manal H & Youssef, Mohamed A & Chescheir, George M & Negm, Lamyaa M & King, Kevin W & Hesterberg, Dean L & Amoozegar, Aziz & Skaggs, R. Wayne, 2020. "DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing," Agricultural Water Management, Elsevier, vol. 242(C).
    20. Häggblom, Olle & Salo, Heidi & Turunen, Mika & Nurminen, Jyrki & Alakukku, Laura & Myllys, Merja & Koivusalo, Harri, 2019. "Impacts of supplementary drainage on the water balance of a poorly drained agricultural field," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:189:y:2017:i:c:p:39-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.