IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000615.html
   My bibliography  Save this article

An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran

Author

Listed:
  • Anbari, Mohammad Javad
  • Zarghami, Mahdi
  • Nadiri, Ata-Allah

Abstract

Socio-ecological systems include diverse resources of complexity involving complicated interactions, feedback, dynamic behavior patterns, heterogeneity in agents’ characteristics and behaviors, as well as system uncertainties. Agent-based modeling is introduced as a tool to simulate different levels of stakeholders and interactions, including individual, group, and institutional agents in complex socio-ecological systems. In the present study, an agent-based model was developed to explore sustainable solutions in uncertain conditions for groundwater restoration of a critical aquifer in the Lake Urmia Basin, Iran. Different projects for aquifer restoration such as wells monitoring, license adjustment, and modern irrigation development were implemented in the developed framework. The results showed that it is possible to alleviate the negative balance of the aquifer in case of necessary coordination in the projects implementation. So that during the simulation period, while increasing the total annual net income of the cultivation by €1.3 million (about 7%), the groundwater level drawdown can be compensated by about 5 m (about 50% of the decline over the past 30 years). Results of sensitivity analysis on the risk-taking behavior of farmer agents showed that it has a more significant impact on the total income than groundwater level. In the risk-seeking society conditions, a 10% increase of total annual net income is expected in the early years of simulation. The framework is used to learn about the influences of agents’ objectives, characteristics, and behaviors on the system variability. Systematic analysis in such a framework provides a better understanding of system structures to support decision-making under uncertainty in a participatory process.

Suggested Citation

  • Anbari, Mohammad Javad & Zarghami, Mahdi & Nadiri, Ata-Allah, 2021. "An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000615
    DOI: 10.1016/j.agwat.2021.106796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, N. H. & Sarma, P. B. S. & Chander, Subhash, 1988. "A simple dated water-production function for use in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 13(1), pages 25-32, April.
    2. Masih Akhbari & Neil Grigg, 2013. "A Framework for an Agent-Based Model to Manage Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4039-4052, September.
    3. Vermeulen, Ben & Pyka, Andreas, 2016. "Agent-based modeling for decision making in economics under uncertainty," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-33.
    4. An, Li, 2012. "Modeling human decisions in coupled human and natural systems: Review of agent-based models," Ecological Modelling, Elsevier, vol. 229(C), pages 25-36.
    5. Masih Akhbari & Neil Grigg, 2015. "Managing Water Resources Conflicts: Modelling Behavior in a Decision Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5201-5216, November.
    6. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    7. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    8. Junying Chu & Can Wang & Jining Chen & Hao Wang, 2009. "Agent-Based Residential Water Use Behavior Simulation and Policy Implications: A Case-Study in Beijing City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3267-3295, December.
    9. le Bars, M. & Attonaty, Jean Marie & Pinson, S., 2002. "An Agent-Based Simulation for Water Sharing Between Different Users," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24829, European Association of Agricultural Economists.
    10. Farhadi, Saber & Nikoo, Mohammad Reza & Rakhshandehroo, Gholam Reza & Akhbari, Masih & Alizadeh, Mohammad Reza, 2016. "An agent-based-nash modeling framework for sustainable groundwater management: A case study," Agricultural Water Management, Elsevier, vol. 177(C), pages 348-358.
    11. Benjamin Saunders & Julius Sim & Tom Kingstone & Shula Baker & Jackie Waterfield & Bernadette Bartlam & Heather Burroughs & Clare Jinks, 2018. "Saturation in qualitative research: exploring its conceptualization and operationalization," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1893-1907, July.
    12. Aghaie, Vahid & Alizadeh, Hosein & Afshar, Abbas, 2020. "Agent-Based hydro-economic modelling for analysis of groundwater-based irrigation Water Market mechanisms," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Joseph Bakarji & Daniel O’Malley & Velimir V. Vesselinov, 2017. "Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3881-3898, September.
    14. Nguyen, N.P. & Shortle, J.S. & Reed, P.M. & Nguyen, T.T., 2013. "Water quality trading with asymmetric information, uncertainty and transaction costs: A stochastic agent-based simulation," Resource and Energy Economics, Elsevier, vol. 35(1), pages 60-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okura, Fumi & Budiasa, I Wayan & Kato, Tasuku, 2022. "Exploring a Balinese irrigation water management system using agent-based modeling and game theory," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Yongfeng Tan & Apurbo Sarkar & Airin Rahman & Lu Qian & Waqar Hussain Memon & Zharkyn Magzhan, 2021. "Does External Shock Influence Farmer’s Adoption of Modern Irrigation Technology?—A Case of Gansu Province, China," Land, MDPI, vol. 10(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    2. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Bahrami, Nafiseh & Afshar, Abbas & Afshar, Mohammad Hadi, 2022. "An agent-based framework for simulating interactions between reservoir operators and farmers for reservoir management with dynamic demands," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Abbas Mirzaei & Mansour Zibaei, 2021. "Water Conflict Management between Agriculture and Wetland under Climate Change: Application of Economic-Hydrological-Behavioral Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 1-21, January.
    5. Lisa Huber & Nico Bahro & Georg Leitinger & Ulrike Tappeiner & Ulrich Strasser, 2019. "Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    6. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    7. Eigner, Amanda E. & Nuppenau, Ernst-August, 2019. "Applied spatial approach of modelling field size changes based on a consideration of farm and landscape interrelations," Agricultural Systems, Elsevier, vol. 176(C).
    8. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    9. Hua Xing & Shuhong Mo & Xiaoyan Liang & Ying Li, 2021. "Water Resources Allocation Based on Complex Adaptive System Theory in the Inland River Irrigation District," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    10. Farhadi, Saber & Nikoo, Mohammad Reza & Rakhshandehroo, Gholam Reza & Akhbari, Masih & Alizadeh, Mohammad Reza, 2016. "An agent-based-nash modeling framework for sustainable groundwater management: A case study," Agricultural Water Management, Elsevier, vol. 177(C), pages 348-358.
    11. Nafiseh Bahrami & Mohammad Reza Nikoo & Ghazi Al-Rawas & Khalifa Al-Jabri & Amir H. Gandomi, 2023. "Optimal Treated Wastewater Allocation Among Stakeholders Based on an Agent-based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 135-156, January.
    12. Drechsler, Martin & Wätzold, Frank & Grimm, Volker, 2022. "The hitchhiker's guide to generic ecological-economic modelling of land-use-based biodiversity conservation policies," Ecological Modelling, Elsevier, vol. 465(C).
    13. Joseph Bakarji & Daniel O’Malley & Velimir V. Vesselinov, 2017. "Agent-Based Socio-Hydrological Hybrid Modeling for Water Resource Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3881-3898, September.
    14. Jiali Gu & Shikun Sun & Yubao Wang & Xiaojuan Li & Yali Yin & Jingxin Sun & Xinyu Qi, 2021. "Sociohydrology: An Effective Way to Reveal the Coupled Evolution of Human and Water Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4995-5010, November.
    15. Tesfaye Woldeyohanes & Arnim Kuhn & Thomas Heckelei & Lalisa Duguma, 2021. "Modeling Non-Cooperative Water Use in River Basins," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    16. Jennifer Tartaglia & Michelle McIntosh & Jonine Jancey & Jane Scott & Andrea Begley, 2021. "Exploring Feeding Practices and Food Literacy in Parents with Young Children from Disadvantaged Areas," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    17. Ficko, Andrej & Boncina, Andrej, 2013. "Probabilistic typology of management decision making in private forest properties," Forest Policy and Economics, Elsevier, vol. 27(C), pages 34-43.
    18. Najwa Taghy & Linda Cambon & Caroline Boulliat & Olivier Aromatario & Claude Dussart, 2021. "Exploring the Determinants of Polypharmacy Prescribing and Dispensing Behaviours in Primary Care for the Elderly—Protocol for a Qualitative Study," IJERPH, MDPI, vol. 18(14), pages 1-10, July.
    19. Liang Liu & Cong Feng & Hongwei Zhang & Xuehua Zhang, 2015. "Game Analysis and Simulation of the River Basin Sustainable Development Strategy Integrating Water Emission Trading," Sustainability, MDPI, vol. 7(5), pages 1-21, April.
    20. Van Droogenbroeck, Ellen & Van Hove, Leo, 2020. "Intra-household task allocation in online grocery shopping: Together alone," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.