IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8437-d603493.html
   My bibliography  Save this article

Water Resources Allocation Based on Complex Adaptive System Theory in the Inland River Irrigation District

Author

Listed:
  • Hua Xing

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Shuhong Mo

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Xiaoyan Liang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Ying Li

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Water resources are the key factors affecting the sustainable development of inland river irrigation districts. The establishment of a water resources management model is helpful to realize the coordinated development of water, society, and ecology. Aiming at the contradiction of water use and ecological vulnerability, this study was based on the method of complex adaptive system (CAS) theory, and an agent-based modeling (ABM) method was adopted. Taking Huaitoutala irrigation district as the research object, a water resource management model considering ecological balance was established, with the water resources potentially tapping in the source area as an effective constraint. This study took 2016 as the datum year; the water consumption and comprehensive benefits of four water-saving irrigation scenarios in different characteristic years were simulated and optimized under the conditions of the current water supply and 10% and 15% potential water resources tapping. The results showed that the model considering the behavior and adaptability of the agent can well optimize and simulate the water use in the irrigation district. Under the application of water resources potential tapping and high-efficiency water-saving technology; the water utilization efficiency (WUE) of the irrigation area has been significantly improved. The comprehensive benefits of the irrigation district increased the proportion of ecological water, which was conducive to the sustainable development of the irrigation district and the ecological protection of inland rivers.

Suggested Citation

  • Hua Xing & Shuhong Mo & Xiaoyan Liang & Ying Li, 2021. "Water Resources Allocation Based on Complex Adaptive System Theory in the Inland River Irrigation District," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8437-:d:603493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Xia & Lu Zhang & Changming Liu & Jingjie Yu, 2007. "Towards better water security in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 233-247, January.
    2. Kim, Daeha & Kaluarachchi, Jagath J., 2016. "A risk-based hydro-economic analysis for land and water management in water deficit and salinity affected farming regions," Agricultural Water Management, Elsevier, vol. 166(C), pages 111-122.
    3. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    4. Jim Doran, 2001. "Intervening to Achieve Co-Operative Ecosystem Management: Towards an Agent Based Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(2), pages 1-4.
    5. Jack W. Meek & Kevin S. Marshall, 2018. "Cultivating resiliency through system shock: the Southern California metropolitan water management system as a complex adaptive system," Public Management Review, Taylor & Francis Journals, vol. 20(7), pages 1088-1104, July.
    6. Jing Guo & Hailiang Xu & Guangpeng Zhang & Kaiye Yuan & Hongbo Ling, 2020. "The Enhanced Management of Water Resources Improves Ecosystem Services in a Typical Arid Basin," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    7. Masih Akhbari & Neil Grigg, 2013. "A Framework for an Agent-Based Model to Manage Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4039-4052, September.
    8. Dehghanipour, Amir Hossein & Schoups, Gerrit & Zahabiyoun, Bagher & Babazadeh, Hossein, 2020. "Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    10. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Edoardo Borgomeo & Jim W. Hall & Mashfiqus Salehin, 2018. "Avoiding the water-poverty trap: insights from a conceptual human-water dynamical model for coastal Bangladesh," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(6), pages 900-922, November.
    12. Lan T. Pham & Ilona M. Otto & Dimitrios Zikos, 2019. "Self-Governance and the Effects of Rules in Irrigation Systems: Evidence from Laboratory and Framed Field Experiments in China, India and Vietnam," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-28, January.
    13. Hui Zhang & Qiyu Ren & Jiaying Li, 2019. "How to Improve Water Resources Allocation Efficiency: A Two-Stage Performance-Based Allocation Mechanism," Sustainability, MDPI, vol. 11(21), pages 1-12, October.
    14. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seungbeom Kim & Kwanghun Chung, 2022. "Optimization of Capacity Allocation Models with Effort Dependent Demand in Global Supply Chain," Sustainability, MDPI, vol. 14(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    2. Wang, Shunke & Chang, Jingjing & Xue, Jie & Sun, Huaiwei & Zeng, Fanjiang & Liu, Lei & Liu, Xin & Li, Xinxin, 2024. "Coupling behavioral economics and water management policies for agricultural land-use planning in basin irrigation districts: Agent-based socio-hydrological modeling and application," Agricultural Water Management, Elsevier, vol. 298(C).
    3. Anbari, Mohammad Javad & Zarghami, Mahdi & Nadiri, Ata-Allah, 2021. "An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran," Agricultural Water Management, Elsevier, vol. 249(C).
    4. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    5. Yagi, Michiyuki & Managi, Shunsuke & Kaneko, Shinji, 2014. "Water Use and Wastewater Discharge of Industrial Sector in China," MPRA Paper 96425, University Library of Munich, Germany.
    6. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Stella Santana & Gilberto Barroso, 2014. "Integrated Ecosystem Management of River Basins and the Coastal Zone in Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4927-4942, November.
    8. Lingcheng Li & Liping Zhang & Jun Xia & Christopher Gippel & Renchao Wang & Sidong Zeng, 2015. "Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2563-2579, June.
    9. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    11. Coelho, Eugênio Ferreira & Lima, Lenilson Wisner Ferreira & Stringam, Blair & de Matos, Aristoteles Pires & Santos, Dionei Lima & Reinhardt, Domingo Haroldo & de Melo Velame, Lucas & dos Santos, Carlo, 2024. "Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation," Agricultural Water Management, Elsevier, vol. 296(C).
    12. Liu, Xiaoli & Wang, Yandong & Zhang, Yuehe & Ren, Xiaolong & Chen, Xiaoli, 2022. "Can rainwater harvesting replace conventional irrigation for winter wheat production in dry semi-humid areas in China?," Agricultural Water Management, Elsevier, vol. 272(C).
    13. Dimitrios Zikos, 2020. "Revisiting the Role of Institutions in Transformative Contexts: Institutional Change and Conflicts," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    14. González-Bravo, Ramón & Fuentes-Cortés, Luis Fabián & Ponce-Ortega, José María, 2017. "Defining priorities in the design of power and water distribution networks," Energy, Elsevier, vol. 137(C), pages 1026-1040.
    15. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    16. Feng Gao & Yuhu Zhang & Xiulin Ren & Yunjun Yao & Zengchao Hao & Wanyuan Cai, 2018. "Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 155-172, May.
    17. Kazeem B. Adedeji & Yskandar Hamam, 2020. "Cyber-Physical Systems for Water Supply Network Management: Basics, Challenges, and Roadmap," Sustainability, MDPI, vol. 12(22), pages 1-30, November.
    18. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    19. Chakaphon Singto & Martijn Vries & Gert Jan Hofstede & Luuk Fleskens, 2021. "Ex Ante Impact Assessment of Reservoir Construction Projects for Different Stakeholders Using Agent-Based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1047-1064, February.
    20. Yuan, Shiwei & Li, Xin & Du, Erhu, 2021. "Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8437-:d:603493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.