IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v225y2019ics0378377419307036.html
   My bibliography  Save this article

Modeling evapotranspiration for irrigation water management in a humid climate

Author

Listed:
  • Anapalli, Saseendran S.
  • Fisher, Daniel K.
  • Reddy, Krishna N.
  • Rajan, Nithya
  • Pinnamaneni, Srinivasa Rao

Abstract

Quantifying evapotranspiration (ET, consumptive crop water requirement) is critical to managing limited water resources for crop irrigations. Agricultural system simulation models that realistically simulate the ET processes are potential tools for integration, synthesis, and extrapolation of location-specific water management research data across soils and climates for limited-water management in agriculture. The objective of this investigation was to evaluate the accuracy of the Root Zone Water Quality Model v2.0 (RZWQM2) simulated ET against ET measured in corn, soybean, and cotton cropping systems in a predominantly clay soil under humid climate in the Lower Mississippi (MS) Delta, USA, in 2016, 2017, and 2018. Energy balance (EB) and eddy covariance (EC) methods were used for measuring ET. The RZWQM2 parameters calibrated in previous studies at the location were used in the simulations. Potential evapotranspiration (PET) in the model was simulated using an extended approach based on the Shuttleworth and Wallace (SW) model. Water infiltration into the soil was simulated using the Green and Ampt approach, and its further movement in soil layers and contributions to soil evaporation using Richard’s equation. Across the three crops and their crop-seasons, simulated daily ET deviated from EC and EB estimates with RMSEs between 0.09 and 0.14 cm and RRMSEs between 21 and 37%. On a weekly basis, accuracies in simulated ET (ETS) improved significantly with RRMSEs between 9 and 17%, and on a seasonal basis RRMSEs were between -9 and 11%. The imbalance in incoming and outgoing energies accounted in the EC system varied between 2 to 12%; taking this uncertainty in estimated ET into account, the accuracies in weekly and seasonal ET simulations were reasonable for their use in irrigation management at these time-scales.

Suggested Citation

  • Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Rajan, Nithya & Pinnamaneni, Srinivasa Rao, 2019. "Modeling evapotranspiration for irrigation water management in a humid climate," Agricultural Water Management, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419307036
    DOI: 10.1016/j.agwat.2019.105731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419307036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anapalli, Saseendran S. & Ahuja, Lajpat R. & Gowda, Prasanna H. & Ma, Liwang & Marek, Gary & Evett, Steven R. & Howell, Terry A., 2016. "Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters," Agricultural Water Management, Elsevier, vol. 177(C), pages 274-283.
    2. Ma, L. & Hoogenboom, G. & Ahuja, L.R. & Ascough II, J.C. & Saseendran, S.A., 2006. "Evaluation of the RZWQM-CERES-Maize hybrid model for maize production," Agricultural Systems, Elsevier, vol. 87(3), pages 274-295, March.
    3. Alves, Isabel & Cameira, Maria do Rosario, 2002. "Evapotranspiration estimation performance of root zone water quality model: evaluation and improvement," Agricultural Water Management, Elsevier, vol. 57(1), pages 61-73, September.
    4. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Wagle, Pradeep & Gowda, Prasanna H. & Sui, Ruixiu, 2018. "Quantifying soybean evapotranspiration using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 209(C), pages 228-239.
    5. Saseendran, S.A. & Trout, T.J. & Ahuja, L.R. & Ma, L. & McMaster, G.S. & Nielsen, D.C. & Andales, A.A. & Chávez, J.L. & Ham, J., 2015. "Quantifying crop water stress factors from soil water measurements in a limited irrigation experiment," Agricultural Systems, Elsevier, vol. 137(C), pages 191-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Yang & Haichao Yu & Sien Li & Xiangning Yuan & Xiang Ao & Haochong Chen & Yuexin Wang & Jie Ding, 2024. "Driving Factors and Numerical Simulation of Evapotranspiration of a Typical Cabbage Agroecosystem in the Shiyang River Basin, Northwest China," Agriculture, MDPI, vol. 14(6), pages 1-14, June.
    2. Wagle, Pradeep & Gowda, Prasanna H. & Northup, Brian K. & Neel, James P.S., 2021. "Ecosystem-level water use efficiency and evapotranspiration partitioning in conventional till and no-till rainfed canola," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Zhao, Haigen & Ma, Yanfei, 2021. "Effects of various driving factors on potential evapotranspiration trends over the main grain-production area of China while accounting for vegetation dynamics," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Jiang, Shouzheng & Zhao, Lu & Liang, Chuan & Hu, Xiaotao & Yaosheng, Wang & Gong, Daozhi & Zheng, Shunsheng & Huang, Yaowei & He, QingYan & Cui, Ningbo, 2022. "Leaf- and ecosystem-scale water use efficiency and their controlling factors of a kiwifruit orchard in the humid region of Southwest China," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Kayatz, Benjamin & Baroni, Gabriele & Hillier, Jon & Lüdtke, Stefan & Freese, Dirk & Wattenbach, Martin, 2024. "Supporting decision-making in agricultural water management under data scarcity using global datasets – chances, limits and potential improvements," Agricultural Water Management, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahadha, Saadi Sattar & Wendroth, Ole & Zhu, Junfeng & Walton, Jason, 2019. "Can measured soil hydraulic properties simulate field water dynamics and crop production?," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Saseendran S. Anapalli & Srinivasa R. Pinnamaneni & Daniel K. Fisher & Krishna N. Reddy, 2021. "Vulnerabilities of irrigated and rainfed corn to climate change in a humid climate in the Lower Mississippi Delta," Climatic Change, Springer, vol. 164(1), pages 1-18, January.
    3. Haomiao Cheng & Shu Ji & Hengjun Ge & Mohmed A. M. Abdalhi & Tengyi Zhu & Xiaoping Chen & Wei Ding & Shaoyuan Feng, 2022. "Optimizing Deficit Irrigation Management to Improve Water Productivity of Greenhouse Tomato under Plastic Film Mulching Using the RZ-SHAW Model," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    4. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    6. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    7. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    8. Libardi, Luís Guilherme Polizel & de Faria, Rogério Teixeira & Dalri, Alexandre Barcellos & de Souza Rolim, Glauco & Palaretti, Luiz Fabiano & Coelho, Anderson Prates & Martins, Izabela Paiva, 2019. "Evapotranspiration and crop coefficient (Kc) of pre-sprouted sugarcane plantlets for greenhouse irrigation management," Agricultural Water Management, Elsevier, vol. 212(C), pages 306-316.
    9. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    10. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    11. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    12. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    13. DeJonge, Kendall C. & Ascough, James C. & Ahmadi, Mehdi & Andales, Allan A. & Arabi, Mazdak, 2012. "Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments," Ecological Modelling, Elsevier, vol. 231(C), pages 113-125.
    14. Janik, Grzegorz & Kłosowicz, Izabela & Walczak, Amadeusz & Adamczewska-Sowińska, Katarzyna & Jama-Rodzeńska, Anna & Sowiński, Józef, 2021. "Application of the TDR technique for the determination of the dynamics of the spatial and temporal distribution of water uptake by plant roots during injection irrigation," Agricultural Water Management, Elsevier, vol. 252(C).
    15. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    16. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Wang, Xingwang & Huo, Zailin & Shukla, Manoj K. & Wang, Xianghao & Guo, Ping & Xu, Xu & Huang, Guanhua, 2020. "Energy fluxes and evapotranspiration over irrigated maize field in an arid area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 228(C).
    19. Gloaguen, Romain M. & Rowland, Diane L. & Brym, Zachary T. & Wilson, Chris. H. & Chun, Hyen Chung & Langham, Ray, 2021. "A METHOD FOR DEVELOPING IRRIGATION DECISION SUPPORT SYSTEMS de novo: EXAMPLE OF SESAME (Sesamum indicum L.) A KNOWN DROUGHT TOLERANT SPECIES," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Saseendran, S.A. & Nielsen, D.C. & Ahuja, L.R. & Ma, L. & Lyon, D.J., 2013. "Simulated yield and profitability of five potential crops for intensifying the dryland wheat-fallow production system," Agricultural Water Management, Elsevier, vol. 116(C), pages 175-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419307036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.