IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v246y2021ics0378377420322162.html
   My bibliography  Save this article

Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2

Author

Listed:
  • Zhang, Jing
  • Zhang, Huihui
  • Sima, Matthew W.
  • Trout, Thomas J.
  • Malone, Rob W.
  • Wang, Li

Abstract

Sunflower (Helianthus annuus L.) has been used as an alternative summer crop in the traditional wheat (Triticum aestivum L.)-fallow rotation in the Great Plains of the USA. However, few studies have been conducted to quantify sunflower productivity and water productivity (WP) under semi-arid conditions and projected climate change. Experiments were conducted in 2008, 2010, and 2011 on sunflowers under deficit irrigation to meet a fraction of crop evapotranspiration (ETc) as estimated by FAO-56 in eastern Colorado. The field data was used to calibrate and validate the CSM-CROPGRO-Sunflower model that is incorporated in the Root Zone Water Qualify Model (RZWQM2). The calibrated model was then used to simulate sunflower production under projected climate conditions with four Representative Concentration Pathways (RCP) scenarios (2.6, 4.5, 6.0, and 8.5) and four irrigation levels (100%, 60%, 40% ETc and rainfed) in the late 21st century. The results showed that the model was able to adequately simulate sunflower biomass, yield, and soil water storage under the different irrigation treatments in all three years. The corresponding relative root mean square deviation (RRMSD) values were between 0.05 and 0.15 for the simulations of soil water storage, yield, and biomass. Under future climate change conditions, the model simulated greater impact of irrigation treatments than RCP scenarios on sunflower production. For example, yield was 3251.3, 2638.85 and 1937.17 kg ha−1 with 100%, 60% and 40% ETc irrigation under baseline (1992–2013) and was 2932.47, 2360.53 and 1810.65 kg ha−1 with these irrigation treatments under RCP8.5 (2070–2091). Simulation results also showed that scheduling irrigations based on 60% of ETc was the best choice for sunflower WP in eastern Colorado. Climate change did not affect sunflower biomass, yield, and WP. There was an increasing trend of irrigation amount was simulated from the baseline to RCP8.5 scenario to maintain a certain percent of ETc due to high temperature projected. For instance, the irrigation amount for 100%, 60% and 40% of ETc irrigation treatment was 16.4%, 17.3%, and 20.0% higher under RCP8.5 than those under baseline conditions with CO2 fertilization. Finally, our results demonstrated that RZWQM2 can be used to effectively schedule sunflower irrigations based on crop evapotranspiration requirement.

Suggested Citation

  • Zhang, Jing & Zhang, Huihui & Sima, Matthew W. & Trout, Thomas J. & Malone, Rob W. & Wang, Li, 2021. "Simulated deficit irrigation and climate change effects on sunflower production in Eastern Colorado with CSM-CROPGRO-Sunflower in RZWQM2," Agricultural Water Management, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322162
    DOI: 10.1016/j.agwat.2020.106672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420322162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rinaldi, Michele & Losavio, Nicola & Flagella, Zina, 2003. "Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy," Agricultural Systems, Elsevier, vol. 78(1), pages 17-30, October.
    2. Dianyuan Ding & Hao Feng & Ying Zhao & Wenzhao Liu & Haixin Chen & Jianqiang He, 2016. "Impact assessment of climate change and later-maturing cultivars on winter wheat growth and soil water deficit on the Loess Plateau of China," Climatic Change, Springer, vol. 138(1), pages 157-171, September.
    3. Malik, Wafa & Dechmi, Farida, 2019. "DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 27-43.
    4. Jonghan Ko & Lajpat Ahuja & S. Saseendran & Timothy Green & Liwang Ma & David Nielsen & Charles Walthall, 2012. "Climate change impacts on dryland cropping systems in the Central Great Plains, USA," Climatic Change, Springer, vol. 111(2), pages 445-472, March.
    5. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    6. Ma, L. & Hoogenboom, G. & Ahuja, L.R. & Ascough II, J.C. & Saseendran, S.A., 2006. "Evaluation of the RZWQM-CERES-Maize hybrid model for maize production," Agricultural Systems, Elsevier, vol. 87(3), pages 274-295, March.
    7. Rinaldi, Michele, 2001. "Application of EPIC model for irrigation scheduling of sunflower in Southern Italy," Agricultural Water Management, Elsevier, vol. 49(3), pages 185-196, August.
    8. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    9. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    10. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    11. Herman, Silva & Marco, Garrido & Cecilia, Baginsky & Alfonso, Valenzuela & Luis, Morales & Cristián, Valenzuela & Sebastián, Pavez & Sebastián, Alister, 2016. "Effect of water availability on growth, water use efficiency and omega 3 (ALA) content in two phenotypes of chia (Salvia hispanica L.) established in the arid Mediterranean zone of Chile," Agricultural Water Management, Elsevier, vol. 173(C), pages 67-75.
    12. Islam, Adlul & Ahuja, Lajpat R. & Garcia, Luis A. & Ma, Liwang & Saseendran, Anapalli S. & Trout, Thomas J., 2012. "Modeling the impacts of climate change on irrigated corn production in the Central Great Plains," Agricultural Water Management, Elsevier, vol. 110(C), pages 94-108.
    13. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Guanhua, 2018. "Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and ta," Agricultural Water Management, Elsevier, vol. 199(C), pages 93-104.
    14. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    15. Karam, Fadi & Lahoud, Rafic & Masaad, Randa & Kabalan, Rabih & Breidi, Joelle & Chalita, Claude & Rouphael, Youssef, 2007. "Evapotranspiration, seed yield and water use efficiency of drip irrigated sunflower under full and deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 90(3), pages 213-223, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    2. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    3. Robert Malone & Jurgen Garbrecht & Phillip Busteed & Jerry Hatfield & Dennis Todey & Jade Gerlitz & Quanxiao Fang & Matthew Sima & Anna Radke & Liwang Ma & Zhiming Qi & Huaiqing Wu & Dan Jaynes & Thom, 2020. "Drainage N Loads Under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    4. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    6. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Zhaozhi Wang & Zhiming Qi & Lulin Xue & Melissa Bukovsky & Matthew Helmers, 2015. "Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field," Climatic Change, Springer, vol. 129(1), pages 323-335, March.
    8. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    9. Zhang, Chao & Liu, Jiangui & Shang, Jiali & Dong, Taifeng & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2021. "Improving winter wheat biomass and evapotranspiration simulation by assimilating leaf area index from spectral information into a crop growth model," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Dokoohaki, Hamze & Gheysari, Mahdi & Mousavi, Sayed-Farhad & Zand-Parsa, Shahrokh & Miguez, Fernando E. & Archontoulis, Sotirios V. & Hoogenboom, Gerrit, 2016. "Coupling and testing a new soil water module in DSSAT CERES-Maize model for maize production under semi-arid condition," Agricultural Water Management, Elsevier, vol. 163(C), pages 90-99.
    11. Chu, Xiaosheng & Flerchinger, Gerald N. & Ma, Liwang & Fang, Quanxiao & Malone, Robert W. & Yu, Qiang & He, Jianqiang & Wang, Naijiang & Feng, Hao & Zou, Yufeng, 2022. "Development of RZ-SHAW for simulating plastic mulch effects on soil water, soil temperature, and surface energy balance in a maize field," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    14. Jiang, Qianjing & Qi, Zhiming & Lu, Cheng & Tan, Chin S. & Zhang, Tiequan & Prasher, Shiv O., 2020. "Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario," Agricultural Water Management, Elsevier, vol. 237(C).
    15. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    16. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    17. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Sezen, S.M. & Yazar, A. & Kapur, B. & Tekin, S., 2011. "Comparison of drip and sprinkler irrigation strategies on sunflower seed and oil yield and quality under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 98(7), pages 1153-1161, May.
    20. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420322162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.