IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v206y2023ics0308521x22002311.html
   My bibliography  Save this article

Modelling phosphorus dynamics in four European long-term experiments

Author

Listed:
  • Muntwyler, Anna
  • Panagos, Panos
  • Morari, Francesco
  • Berti, Antonio
  • Jarosch, Klaus A.
  • Mayer, Jochen
  • Lugato, Emanuele

Abstract

Phosphorus (P) is a non-renewable geological macronutrient that plays an essential role in food security. The excessive use of P as a fertilizer and its subsequent diffuse loss leads to the deterioration of water quality, eutrophication, and loss of biodiversity. Ecosystem process-based models are a powerful tool to depict the P cycle, investigate the effects of management practices and climate change, and ultimately assess policy interventions that affect biogeochemical cycles. Of the limited number of P models in agricultural production systems, none have been tested in temperate conditions for periods of decades using long-term field experiments.

Suggested Citation

  • Muntwyler, Anna & Panagos, Panos & Morari, Francesco & Berti, Antonio & Jarosch, Klaus A. & Mayer, Jochen & Lugato, Emanuele, 2023. "Modelling phosphorus dynamics in four European long-term experiments," Agricultural Systems, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:agisys:v:206:y:2023:i:c:s0308521x22002311
    DOI: 10.1016/j.agsy.2022.103595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X22002311
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2022.103595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stehfest, Elke & Heistermann, Maik & Priess, Joerg A. & Ojima, Dennis S. & Alcamo, Joseph, 2007. "Simulation of global crop production with the ecosystem model DayCent," Ecological Modelling, Elsevier, vol. 209(2), pages 203-219.
    2. Xue, Xiaobo & Pang, YuLei & Landis, Amy E., 2014. "Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol," Renewable Energy, Elsevier, vol. 66(C), pages 454-460.
    3. Dzotsi, K.A. & Jones, J.W. & Adiku, S.G.K. & Naab, J.B. & Singh, U. & Porter, C.H. & Gijsman, A.J., 2010. "Modeling soil and plant phosphorus within DSSAT," Ecological Modelling, Elsevier, vol. 221(23), pages 2839-2849.
    4. Christine Alewell & Bruno Ringeval & Cristiano Ballabio & David A. Robinson & Panos Panagos & Pasquale Borrelli, 2020. "Global phosphorus shortage will be aggravated by soil erosion," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Amin, Asad & Nasim, Wajid & Mubeen, Muhammad & Ahmad, Ashfaq & Nadeem, Muhammad & Urich, Peter & Fahad, Shah & Ahmad, Shakeel & Wajid, Aftab & Tabassum, Fareeha & Hammad, Hafiz Mohkum & Sultana, Syeda, 2018. "Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan," Agricultural Systems, Elsevier, vol. 167(C), pages 213-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Maksym Łaszewski & Michał Fedorczyk & Sylwia Gołaszewska & Zuzanna Kieliszek & Paulina Maciejewska & Jakub Miksa & Wiktoria Zacharkiewicz, 2021. "Land Cover Effects on Selected Nutrient Compounds in Small Lowland Agricultural Catchments," Land, MDPI, vol. 10(2), pages 1-20, February.
    3. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    4. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    5. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    6. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    7. Ortiz-Bobea, Ariel & Kim, Do-Hyung & Chen, Yanyou, "undated". "Identifying climatic constraints of US agriculture," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170674, Agricultural and Applied Economics Association.
    8. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    9. Peckett, Frances J. & Glegg, Gillian A. & Rodwell, Lynda D., 2014. "Assessing the quality of data required to identify effective marine protected areas," Marine Policy, Elsevier, vol. 45(C), pages 333-341.
    10. Yane Freitas Silva & Rafael Vasconcelos Valadares & Henrique Boriolo Dias & Santiago Vianna Cuadra & Eleanor E. Campbell & Rubens A. C. Lamparelli & Edemar Moro & Rafael Battisti & Marcelo R. Alves & , 2022. "Intense Pasture Management in Brazil in an Integrated Crop-Livestock System Simulated by the DayCent Model," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    11. Khoo, Hsien H. & Wong, Loretta L. & Tan, Jonathan & Isoni, Valerio & Sharratt, Paul, 2015. "Synthesis of 2-methyl tetrahydrofuran from various lignocellulosic feedstocks: Sustainability assessment via LCA," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 174-182.
    12. Hongdan Li & Wenjiao Shi & Bing Wang & Tingting An & Shuang Li & Shuangyi Li & Jingkuan Wang, 2017. "Comparison of the modeled potential yield versus the actual yield of maize in Northeast China and the implications for national food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 99-114, February.
    13. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    14. Machado, Karina Scurupa & Seleme, Robson & Maceno, Marcell M.C. & Zattar, Izabel C., 2017. "Carbon footprint in the ethanol feedstocks cultivation – Agricultural CO2 emission assessment," Agricultural Systems, Elsevier, vol. 157(C), pages 140-145.
    15. Juhwan Lee & Steven Gryze & Johan Six, 2011. "Effect of climate change on field crop production in California’s Central Valley," Climatic Change, Springer, vol. 109(1), pages 335-353, December.
    16. Nocentini, Andrea & Monti, Andrea, 2019. "Comparing soil respiration and carbon pools of a maize-wheat rotation and switchgrass for predicting land-use change-driven SOC variations," Agricultural Systems, Elsevier, vol. 173(C), pages 209-217.
    17. Warut Pannakkong & Parthana Parthanadee & Jirachai Buddhakulsomsiri, 2022. "Impacts of Harvesting Age and Pricing Schemes on Economic Sustainability of Cassava Farmers in Thailand under Market Uncertainty," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    18. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    19. Xiuzhi Chen & Yue Hou & Thomas Kastner & Liu Liu & Yuqian Zhang & Tuo Yin & Mo Li & Arunima Malik & Mengyu Li & Kelly R. Thorp & Siqi Han & Yaoze Liu & Tahir Muhammad & Jianguo Liu & Yunkai Li, 2023. "Physical and virtual nutrient flows in global telecoupled agricultural trade networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Beatrice Garske & Antonia Bau & Felix Ekardt, 2021. "Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?," Sustainability, MDPI, vol. 13(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:206:y:2023:i:c:s0308521x22002311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.