IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v177y2020ics0308521x18300222.html
   My bibliography  Save this article

Whole farm implications of lucerne transitions in temperate crop-livestock systems

Author

Listed:
  • Smith, Andrew P.
  • Moore, Andrew D.

Abstract

Lucerne (Medicago sativa L.) is valued by producers with integrated crop-livestock systems. The multiple benefits of periods of lucerne leys to either livestock or to crop production have been widely reported; however, the importance of managing lucerne leys to whole farm profit and production has not and is best suited to a whole of system modelling study. This paper reports a simulation study aimed at better understanding the mixed farming systems that include short-term (3-year) phases of lucerne: specifically, the effects of terminating lucerne leys at different times prior to cropping. Simulations of mixed farming systems with the same soil type, crop rotation and proportional land use were conducted along a rainfall transect in a temperate environment in south-eastern Australia. Spring versus summer termination of the lucerne ley prior to cropping in autumn were compared. Although farming systems where lucerne was terminated in spring had higher crop production (mostly because of increased N at sowing) than those where lucerne was terminated in summer, the opposite was true for livestock production. Livestock production was higher in systems with summer termination mostly because of higher ewe condition scores at mating. When these sometimes positive and sometimes negative effects were evaluated at the whole of farm scale, in cases except the low rainfall site, allowing the lucerne ley to grow as late as possible prior to cropping was the most profitable management strategy in medium to high rainfall systems as it resulted in more lambs that were sold at heavier weights and the systems were more profitable, less costly, more efficient and less risky than those where leys were terminated in spring.

Suggested Citation

  • Smith, Andrew P. & Moore, Andrew D., 2020. "Whole farm implications of lucerne transitions in temperate crop-livestock systems," Agricultural Systems, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:agisys:v:177:y:2020:i:c:s0308521x18300222
    DOI: 10.1016/j.agsy.2019.102686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18300222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.102686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donnelly, J. R. & Freer, M. & Salmon, L. & Moore, A. D. & Simpson, R. J. & Dove, H. & Bolger, T. P., 2002. "Evolution of the GRAZPLAN decision support tools and adoption by the grazing industry in temperate Australia," Agricultural Systems, Elsevier, vol. 74(1), pages 115-139, October.
    2. Ward, P. R. & Dunin, F. X. & Micin, S. F., 2002. "Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 83-97, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 1. Physical production and economic performance," Agricultural Systems, Elsevier, vol. 97(3), pages 108-125, June.
    2. McCown, R. L., 2002. "Changing systems for supporting farmers' decisions: problems, paradigms, and prospects," Agricultural Systems, Elsevier, vol. 74(1), pages 179-220, October.
    3. Hutchings, Timothy R., 2009. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia – Part 1," AFBM Journal, Australasian Farm Business Management Network, vol. 6(1), pages 1-16, October.
    4. Brown, Peter D. & Cochrane, Thomas A. & Krom, Thomas D., 2010. "Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing," Agricultural Water Management, Elsevier, vol. 97(6), pages 892-900, June.
    5. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Beardmore, Leslie & Heagney, Elizabeth & Sullivan, Caroline A., 2019. "Complementary land use in the Richmond River catchment: Evaluating economic and environmental benefits," Land Use Policy, Elsevier, vol. 87(C).
    7. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    8. Nordblom, Thomas L. & Hutchings, Timothy R. & Li, Guangdi & Hayes, Richard C. & Finlayson, John D., 2016. "Financial risk analysis of lucerne pasture establishment: Under-sowing vs Direct sowing," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235420, Australian Agricultural and Resource Economics Society.
    9. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    10. Hodgson, G. A. & Bartle, G. A. & Silberstein, R. P. & Hatton, T. J. & Ward, B. H., 2002. "Measuring and monitoring the effects of agroforestry and drainage in the `Ucarro' sub-catchment," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 39-56, February.
    11. Townsend, P.V. & Harper, R.J. & Brennan, P.D. & Dean, C. & Wu, S. & Smettem, K.R.J. & Cook, S.E., 2012. "Multiple environmental services as an opportunity for watershed restoration," Forest Policy and Economics, Elsevier, vol. 17(C), pages 45-58.
    12. Ghahramani, Afshin & Bowran, David, 2018. "Transformative and systemic climate change adaptations in mixed crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 164(C), pages 236-251.
    13. Hutchings, Timothy R. & Nordblom, Thomas L. & Hayes, Richard C. & Li, Guangdi & Finlayson, John D., 2016. "A framework for modelling financial risk in Southern Australia: the intensive farming (IF) model," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235333, Australian Agricultural and Resource Economics Society.
    14. Ghahramani, Afshin & Moore, Andrew D., 2016. "Impact of climate changes on existing crop-livestock farming systems," Agricultural Systems, Elsevier, vol. 146(C), pages 142-155.
    15. Bathgate, Andrew & Pannell, David J., 2002. "Economics of deep-rooted perennials in western Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 117-132, February.
    16. Pannell, David J. & Ewing, Michael A., 2006. "Managing secondary dryland salinity: Options and challenges," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 41-56, February.
    17. Nordblom, Thomas L. & Hutchings, Timothy R. & Hayes, Richard C. & Li, Guangdi D., 2015. "A Framework for Modelling Whole-Farm Financial Risk," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202581, Australian Agricultural and Resource Economics Society.
    18. Latta, R. A. & Cocks, P. S. & Matthews, C., 2002. "Lucerne pastures to sustain agricultural production in southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 99-109, February.
    19. Rundle, Peter J. & Rundle, Bronte F., 2002. "A case study of farm-based solutions to water logging and secondary salinity in southwestern Australia," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 31-38, February.
    20. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:177:y:2020:i:c:s0308521x18300222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.