IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003309.html
   My bibliography  Save this article

Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area

Author

Listed:
  • Hou, Chenli
  • Tian, Delong
  • Xu, Bing
  • Ren, Jie
  • Hao, Lei
  • Chen, Ning
  • Li, Xianyue

Abstract

Returning farmland to grasslands (RFG)to restore soil fertility and prevent land degradation in overused agricultural lands is an important measure. However, the hydrological processes, water consumption and utilization in field systems are undoubtedly changed in shallow groundwater areas owing to RFG. Experiments in the Hetao irrigation district, Inner Mongolia, China, during 2017 (2-yr for alfalfa) and 2018 (3-yr for alfalfa) were conducted to evaluate the difference in soil water distribution, percolation, groundwater recharge, water consumption and water productivity between alfalfa (Medicago sativa L.) and maize (Zea mays L.) fields. The stable oxygen isotope method was used to reveal a strategy to utilize different water sources for alfalfa and maize in an arid shallow groundwater area. Compared with maize, the increase in water consumption by alfalfa increased the soil water consumption of the 0–100 cm soil layer and the groundwater recharge, which led to an increase of 9.44 mm and 65.32 mm, respectively. However, the leakage below 100 cm layer decreased by 44.91% compared with those of the maize field. The yield and WPc of alfalfa were 29.27% and 6.28% greater than that of maize in 2018, respectively. Percentages of 75.43%, 18.73% and 5.84% of irrigation water, groundwater and precipitation were taken up by alfalfa during the irrigation period, respectively, while it was 81.27%, 12.90% and 5.83% in the maize field, respectively. After irrigation, the crops primarily absorbed water from upper soil layer (0–40 cm), comprising 72.93% (alfalfa) and 69.8% (maize). However, more water from the deeper layers was used by alfalfa before irrigation, and the average contribution of 40–100 cm soil layer was 63.0%, an increase of 11.2% compared with maize. In addition, even though maize absorbed water by roots that could reach a soil depth of 80 cm, it primarily drew water from the 40–60 cm soil layer.

Suggested Citation

  • Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003309
    DOI: 10.1016/j.agwat.2021.107065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Ward, P. R. & Dunin, F. X. & Micin, S. F., 2002. "Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 83-97, February.
    4. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize," Agricultural Water Management, Elsevier, vol. 97(10), pages 1571-1581, October.
    5. Bai, Wen-Ming & Li, Ling-Hao, 2003. "Effect of irrigation methods and quota on root water uptake and biomass of alfalfa in the Wulanbuhe sandy region of China," Agricultural Water Management, Elsevier, vol. 62(2), pages 139-148, September.
    6. Zhang, L. & Dawes, W. R. & Slavich, P. G. & Meyer, W. S. & Thorburn, P. J. & Smith, D. J. & Walker, G. R., 1999. "Growth and ground water uptake responses of lucerne to changes in groundwater levels and salinity: lysimeter, isotope and modelling studies," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 265-282, February.
    7. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Wang, Xiao-Ling & Sun, Guo-Jun & Jia, Yu & Li, Feng-Min & Xu, Jin-Zhang, 2008. "Crop yield and soil water restoration on 9-year-old alfalfa pasture in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 95(3), pages 190-198, March.
    9. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    10. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    11. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinghua & Liu, Xin, 2010. "A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China," Agricultural Water Management, Elsevier, vol. 97(3), pages 475-482, March.
    12. Burggraf, Christine & Kuhn, Lena & Zhao, Qi-ran & Teuber, Ramona & Glauben, Thomas, 2015. "Economic growth and nutrition transition: An empirical analysis comparing demand elasticities for foods in China and Russia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(6), pages 1008-1022.
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. Wu, Youjie & Du, Taisheng & Li, Fusheng & Li, Sien & Ding, Risheng & Tong, Ling, 2016. "Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope," Agricultural Water Management, Elsevier, vol. 168(C), pages 35-44.
    15. Zhao, Chuanyan & Feng, Zhaodong & Chen, Guodong, 2004. "Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 69(2), pages 101-114, September.
    16. Song, Xiaolin & Gao, Xiaodong & Zhao, Xining & Wu, Pute & Dyck, Miles, 2017. "Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 184(C), pages 170-177.
    17. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenli Hou & Xianyue Li & Delong Tian & Bing Xu & Chen Zhang & Jie Ren & Ning Chen, 2022. "Evaluation of the Effects of Water and Salinity Stress on the Growth and Biochemistry of Alfalfa ( Medicago sativa L.) at the Branching Stage," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yongyong & Wu, Shaoxiong & Kang, Wenrong & Tian, Zihan, 2022. "Multiple sources characteristics of root water uptake of crop under oasis farmlands in hyper-arid regions," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Cao, Xiaoqing & Yang, Peiling & Engel, Bernard A. & Li, Pingfeng, 2018. "The effects of rainfall and irrigation on cherry root water uptake under drip irrigation," Agricultural Water Management, Elsevier, vol. 197(C), pages 9-18.
    3. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    6. Li, Pingfeng & Cao, Xiaoqing & Tan, Huang & Wang, Jiahang & Ren, Shumei & Yang, Peiling, 2020. "Studies on water uptake and heat status of cherry root under water-saving measures," Agricultural Water Management, Elsevier, vol. 242(C).
    7. Liu, Zhen & Ma, Feng-yun & Hu, Tong-xi & Zhao, Kai-guang & Gao, Tian-ping & Zhao, Hong-xiang & Ning, Tang-yuan, 2020. "Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Wu, Youjie & Du, Taisheng & Li, Fusheng & Li, Sien & Ding, Risheng & Tong, Ling, 2016. "Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope," Agricultural Water Management, Elsevier, vol. 168(C), pages 35-44.
    10. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    11. He, Rui & He, Min & Xu, Haidong & Zhang, Kun & Zhang, Mingcai & Ren, Dan & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "A novel plant growth regulator brazide improved maize water productivity in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    15. Maroufpoor, Saman & Maroufpoor, Eisa & Khaledi, Mohammad, 2019. "Effect of farmers’ management on movable sprinkler solid-set systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Xu, Jing & Guo, Ziyan & Li, Zhimin & Li, Fangjian & Xue, Xuanke & Wu, Xiaorong & Zhang, Xuemei & Li, Hui & Zhang, Xudong & Han, Qingfang, 2021. "Stable oxygen isotope analysis of the water uptake mechanism via the roots in spring maize under the ridge–furrow rainwater harvesting system in a semi-arid region," Agricultural Water Management, Elsevier, vol. 252(C).
    18. Maroufpoor, Saman & Shiri, Jalal & Maroufpoor, Eisa, 2019. "Modeling the sprinkler water distribution uniformity by data-driven methods based on effective variables," Agricultural Water Management, Elsevier, vol. 215(C), pages 63-73.
    19. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    20. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.