IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v168y2019icp144-153.html
   My bibliography  Save this article

Using reanalysis in crop monitoring and forecasting systems

Author

Listed:
  • Toreti, A.
  • Maiorano, A.
  • De Sanctis, G.
  • Webber, H.
  • Ruane, A.C.
  • Fumagalli, D.
  • Ceglar, A.
  • Niemeyer, S.
  • Zampieri, M.

Abstract

Weather observations are essential for crop monitoring and forecasting but they are not always available and in some cases they have limited spatial representativeness. Thus, reanalyses represent an alternative source of information to be explored. In this study, we assess the feasibility of reanalysis-based crop monitoring and forecasting by using the system developed and maintained by the European Commission- Joint Research Centre, its gridded daily meteorological observations, the biased-corrected reanalysis AgMERRA and the ERA-Interim reanalysis. We focus on Europe and on two crops, wheat and maize, in the period 1980–2010 under potential and water-limited conditions.

Suggested Citation

  • Toreti, A. & Maiorano, A. & De Sanctis, G. & Webber, H. & Ruane, A.C. & Fumagalli, D. & Ceglar, A. & Niemeyer, S. & Zampieri, M., 2019. "Using reanalysis in crop monitoring and forecasting systems," Agricultural Systems, Elsevier, vol. 168(C), pages 144-153.
  • Handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:144-153
    DOI: 10.1016/j.agsy.2018.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17308764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshichika Iizumi & Hirofumi Sakuma & Masayuki Yokozawa & Jing-Jia Luo & Andrew J. Challinor & Molly E. Brown & Gen Sakurai & Toshio Yamagata, 2013. "Prediction of seasonal climate-induced variations in global food production," Nature Climate Change, Nature, vol. 3(10), pages 904-908, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Araghi, Alireza & Jaghargh, Majid Rajabi & Maghrebi, Mohsen & Martinez, Christopher J. & Fraisse, Clyde W. & Olesen, Jørgen E. & Hoogenboom, Gerrit, 2021. "Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    2. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    3. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    4. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Papers 2104.14286, arXiv.org.
    5. Nazan An & Mustafa Tufan Turp & Murat Türkeş & Mehmet Levent Kurnaz, 2020. "Mid-Term Impact of Climate Change on Hazelnut Yield," Agriculture, MDPI, vol. 10(5), pages 1-20, May.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Kung, Chih-Chun & Cao, Xiaoyong & Choi, Yongrok & Kung, Shan-Shan, 2019. "A stochastic analysis of cropland utilization and resource allocation under climate change," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    8. Kim, Daeha & Chun, Jong Ahn & Inthavong, Thavone, 2021. "Managing climate risks in a nutrient-deficient paddy rice field using seasonal climate forecasts and AquaCrop," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Nazan An & M Tufan Turp & M Tufan Turp & Murat Türkeş & M Levent Kurnaz & Murat Türkeş & M Levent Kurnaz, 2020. "Climate Change Effects on Agricultural Production- A Short Review," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 8(3), pages 1097-1099, March.
    10. Villoria, Nelson B. & Delgado, Michael, 2017. "Worldwide Crop Supply Responses to El Niño Southern Oscillation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258564, Agricultural and Applied Economics Association.
    11. Akinmutimi Al & Ukonu A, 2020. "Comparative Effects of Wood Ash and Poultry Manure on Soil Ph and Potassium Release from an Acid Ultisol in Umudike, Abia State, Nigeria," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 8(2), pages 1063-1068, February.
    12. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    13. Saeed Nosratabadi & Sina Ardabili & Zoltan Lakner & Csaba Mako & Amir Mosavi, 2021. "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS," Agriculture, MDPI, vol. 11(5), pages 1-13, May.
    14. Erin Coughlan de Perez & Maarten van Aalst & Richard Choularton & Bart van den Hurk & Simon Mason & Hannah Nissan & Saroja Schwager, 2019. "From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in East Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 57-68, February.
    15. García-León, David & Contreras, Sergio & Hunink, Johannes, 2019. "Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals," Agricultural Water Management, Elsevier, vol. 213(C), pages 388-396.
    16. Dana Cordell & Elsa Dominish & Mohamed Esham & Brent Jacobs & Madhuri Nanda, 2021. "Adapting food systems to the twin challenges of phosphorus and climate vulnerability: the case of Sri Lanka," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 477-492, April.
    17. Phong V. V. Le & James T. Randerson & Rebecca Willett & Stephen Wright & Padhraic Smyth & Clément Guilloteau & Antonios Mamalakis & Efi Foufoula-Georgiou, 2023. "Climate-driven changes in the predictability of seasonal precipitation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Qing Sun & Yi Zhang & Xianghong Che & Sining Chen & Qing Ying & Xiaohui Zheng & Aixia Feng, 2022. "Coupling Process-Based Crop Model and Extreme Climate Indicators with Machine Learning Can Improve the Predictions and Reduce Uncertainties of Global Soybean Yields," Agriculture, MDPI, vol. 12(11), pages 1-15, October.

    More about this item

    Keywords

    Wheat; Maize; Reanalysis; Europe;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:144-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.