IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-04-52.html
   My bibliography  Save this article

Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity Models

Author

Listed:
  • Melina Dritsaki

    (University of Oxford, Oxford, UK)

  • Chaido Dritsaki

    (Department of Accounting and Finance, University of Western Macedonia, Kozani, Greece.)

Abstract

In the past few decades, there are lot of discussions around global warming and climate change primarily due to the increased CO2 emissions generated by the consumption of fossil fuels, such as oil and natural gas. After an enormous effort, the EU-28 managed to reduce CO2 emissions in 2014 by 25.7% comparing to 1990 (Kyoto Protocol). This effort should continue in the future so that the EU-28 achieve a 40% reduction on CO2 emissions by 2030. The current paper aims at investigating the optimum model to forecast CO2 emissions in the EU-28. To achieve this aim an ARIMA(1,1,1)-ARCH(1) model was used, combined with the linear ARIMA model and the conditional variance of the ARCH model. The estimation of parameter optimisation of ARIMA(1,1,1)-ARCH(1) model was done with the Maximum Likelihood approach using the Marquardt (1963), and Berndt-Hall-Hall-Hausman (BHHH) algorithms and the three distributions (Normal, t-Student, Generalized error), whereas for the estimation of the covariance coefficient the reversed matrix by Hessian was used. Finally, in order to forecast the ARIMA(1,1,1)-ARCH(1) model, a dynamic as well as a static process was applied. The results of the forecasting revealed that the static procedure provides a better forecast comparing to the dynamic one.

Suggested Citation

  • Melina Dritsaki & Chaido Dritsaki, 2020. "Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity Models," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 411-423.
  • Handle: RePEc:eco:journ2:2020-04-52
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/9186/5149
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/9186/5149
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    2. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    3. Nyoni, Thabani & Mutongi, Chipo, 2019. "Modeling and forecasting carbon dioxide emissions in China using Autoregressive Integrated Moving Average (ARIMA) models," MPRA Paper 93984, University Library of Munich, Germany.
    4. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    5. Mohammad Reza Lotfalipour & Mohammad Ali Falahi & Morteza Bastam, 2013. "Prediction of CO2 Emissions in Iran using Grey and ARIMA Models," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 229-237.
    6. Chaido Dritsaki, 2018. "The Performance of Hybrid ARIMA-GARCH Modeling and Forecasting Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 14-21.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Dritsaki, Chaido, 2019. "Modeling the Volatility of Exchange Rate Currency using GARCH Model," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 72(2), pages 209-230.
    9. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    10. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgiana Moiceanu & Mirela Nicoleta Dinca, 2021. "Climate Change-Greenhouse Gas Emissions Analysis and Forecast in Romania," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    2. Heru Wahyudi & Winda Rika Lestasi & Ratna Septiyanti & Widia Anggi Palupi, 2023. "Walking as an Alternative to Indonesia s Oil Consumption Problem," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 111-119, July.
    3. Miguel A. Jaramillo-Morán & Daniel Fernández-Martínez & Agustín García-García & Diego Carmona-Fernández, 2021. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study," Energies, MDPI, vol. 14(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos Dritsakis & Paraskevi Klazoglou, 2018. "Forecasting Unemployment Rates in USA using Box-Jenkins Methodology," International Journal of Economics and Financial Issues, Econjournals, vol. 8(1), pages 9-20.
    2. Dritsaki, Chaido, 2019. "Modeling the Volatility of Exchange Rate Currency using GARCH Model," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 72(2), pages 209-230.
    3. Sáenz Rodríguez, Estela & Sabaté Sort, Marcela & Gadea Rivas, María Dolores, 2009. "La medición del riesgo externo. Un estudio aplicado al caso español en el periodo 1960-2000/The Measurement of External Risk. An Applied Study to the Spanish Case in the Period 1960-2000," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 575(16á)-57, Agosto.
    4. Chaido Dritsaki, 2018. "The Performance of Hybrid ARIMA-GARCH Modeling and Forecasting Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 14-21.
    5. Dimitrios Kartsonakis-Mademlis & Nikolaos Dritsakis, 2022. "Asymmetric volatility transmission in Japanese stock market in the presence of structural breaks," The Japanese Economic Review, Springer, vol. 73(4), pages 647-677, October.
    6. Walid M. A. Ahmed, 2014. "Dynamic interactions between Egyptian equity and currency markets prior to and during political unrest," Applied Financial Economics, Taylor & Francis Journals, vol. 24(20), pages 1347-1359, October.
    7. Sugra Humbatova, 2023. "The Impact of Oil Prices on State Budget Income and Expenses: Case of Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 189-212, January.
    8. Balaguer, Jacint & Ripollés, Jordi, 2012. "Testing for price response asymmetries in the Spanish fuel market. New evidence from daily data," Energy Economics, Elsevier, vol. 34(6), pages 2066-2071.
    9. Dimitrios Kartsonakis-Mademlis & Nikolaos Dritsakis, 2020. "Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 164-182.
    10. Sugra Ingilab Humbatova & Natig Gadim-Oglu Hajiev, 2024. "Analysis of the Main Social Macroeconomic Indicators of the Population During The oil Boom in Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 135-149, March.
    11. Estela Sáenz & María Dolores Gadea & Marcela Sabaté, 2009. "Measuring the external risk in the United Kingdom," Economics Bulletin, AccessEcon, vol. 29(2), pages 1182-1189.
    12. Sugra Humbatova & Ibrahim Guliyev Gadim & Sabuhi Tanriverdiyev Mileddin & Natig Gadim-Oglu Hajiyev, 2023. "Impact of Oil Factor on Consumer Market: The Case of Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 202-215, July.
    13. Poshakwale, Sunil S. & Aquino, Katty Pérez, 2008. "The dynamics of volatility transmission and information flow between ADRs and their underlying stocks," Global Finance Journal, Elsevier, vol. 19(2), pages 187-201.
    14. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    15. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    16. Haigh, Michael S. & Bryant, Henry L., 2000. "Price And Price Risk Dynamics In Barge And Ocean Freight Markets And The Effects On Commodity Trading," 2000 Conference, April 17-18 2000, Chicago, Illinois 18934, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    17. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    18. K. Lebedeva, 2015. "An Empirical Analysis of the Russian Financial Markets’ Liquidity and Returns," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 3(3), pages 5-31.
    19. Apostolos Serletis & Anastasios Malliaris & Melvin Hinich & Periklis Gogas, 2012. "Episodic Nonlinearity in Leading Global Currencies," Open Economies Review, Springer, vol. 23(2), pages 337-357, April.
    20. Fernando Fernandez-Rodriguez & Simon Sosvilla-Rivero & Maria Dolores Garcia-Artiles, 1997. "Using nearest neighbour predictors to forecast the Spanish stock market," Investigaciones Economicas, Fundación SEPI, vol. 21(1), pages 75-91, January.

    More about this item

    Keywords

    CO2 Emissions; ARIMA(1; 1; 1)-ARCH(1) model; Forecasting; E.U;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-04-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.