IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2018-06-22.html
   My bibliography  Save this article

Classification of Lending Risks and Interpretation of Operational Efficiency in Islamic Banks Registered on the Bahrain Stock Exchange

Author

Listed:
  • Tharwah Shaalan

    (Department of Economics and Finance, Faculty of Business Administration, Taibah University, Al-Madinah, Al-Madinah Al-Munawara, KSA)

Abstract

This paper aims to classify the credit risk and interpret the operational efficiency for Islamic banks listed on the Bahrain Stock Exchange (BSE). The paper is divided into two parts. Part I relates to classifying the risk of lending via a range of variables: lending ratios, loan profitability, and bank risk variables such as capital bank adequacy and financial leverage. Discriminant analysis has been used to prove the hypothesis in this section. Part II relates to the interpretation of operational efficiency via a set of variables reflecting the bank's ownership, number of branches, financial leverage, and the size of the bank. The hypothesis here was proven by using a random regression effects analysis. The regression results reflected the impact of the mentioned variables on the operating efficiency for Islamic banks listed on the BSE. The study is structured as follows: Introduction; Models of forecasting financial failure; Review of literature on the efficiency of banks; Hypothesis of part 1,which classifies Islamic banks into three categories low, medium, or high based on the banks' efficiency including hypotheses tests, description of variables, and the mathematical model; Results of hypotheses of part I; Hypotheses of part II, which is devoted to testing the efficiency of Islamic banks using the explained variables and the same methodology as in part I; Results of part II; Conclusion; and References.

Suggested Citation

  • Tharwah Shaalan, 2018. "Classification of Lending Risks and Interpretation of Operational Efficiency in Islamic Banks Registered on the Bahrain Stock Exchange," International Journal of Economics and Financial Issues, Econjournals, vol. 8(6), pages 151-156.
  • Handle: RePEc:eco:journ1:2018-06-22
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijefi/article/download/7114/pdf
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijefi/article/view/7114/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lennox, Clive, 1999. "Identifying failing companies: a re-evaluation of the logit, probit and DA approaches," Journal of Economics and Business, Elsevier, vol. 51(4), pages 347-364, July.
    2. Syed Ali, Salman, 2012. "Islamic Banking in the Middle-East and North-Africa (MENA) Region," Islamic Economic Studies, The Islamic Research and Training Institute (IRTI), vol. 20, pages 1-44.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Lina Novickytė & Jolanta Droždz, 2018. "Measuring the Efficiency in the Lithuanian Banking Sector: The DEA Application," IJFS, MDPI, vol. 6(2), pages 1-15, March.
    6. Colesnic, Olga & Kounetas, Konstantinos & Michael, Polemis, 2020. "Estimating risk efficiency in Middle East banks before and after the crisis: A metafrontier framework," Global Finance Journal, Elsevier, vol. 46(C).
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    8. Angelini, Paolo, 2000. "Are Banks Risk Averse? Intraday Timing of Operations in the Interbank Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(1), pages 54-73, February.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Angelini, Paolo, 2000. "Erratum [Are Banks Risk Averse? Intraday Timing of Operations in the Interbank Market]," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 442-442, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
    3. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
    4. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    5. Surbhi Bhatia & Manish K. Singh, 2022. "Fifty years since Altman (1968): Performance of financial distress prediction models," Working Papers 12, xKDR.
    6. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    7. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    8. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    9. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    10. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    11. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    12. Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
    13. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    14. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
    15. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    16. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    17. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    18. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    19. E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
    20. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.

    More about this item

    Keywords

    loans profit efficiency; Islamic Banks; Z-scores; operating efficiency; classification.;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2018-06-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.