Skills for the future – forecasting firm competitiveness using machine learning methods and employer–employee register data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Brunello, Giorgio & Wruuck, Patricia & Maurin, Laurent, 2019. "Skill shortages and skill mismatch in Europe: A review of the literature," EIB Working Papers 2019/05, European Investment Bank (EIB).
- Ron Boschma & Rikard Eriksson & Urban Lindgren, 2009.
"How does labour mobility affect the performance of plants? The importance of relatedness and geographical proximity,"
Journal of Economic Geography, Oxford University Press, vol. 9(2), pages 169-190, March.
- Ron Boschma & R. Eriksson & U. Lindgren, 2008. "How does Labour Mobility affect the Performance of Plants? The importance of relatedness and geographical proximity," DRUID Working Papers 08-14, DRUID, Copenhagen Business School, Department of Industrial Economics and Strategy/Aalborg University, Department of Business Studies.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
- Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
- Nils Grashof, 2020. "Sinking or swimming in the cluster labour pool? A firm-specific analysis of the effect of specialized labour," Jena Economics Research Papers 2020-006, Friedrich-Schiller-University Jena.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Thiemo Fetzer & Stephan Kyburz, 2024.
"Cohesive Institutions and Political Violence,"
The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," Empirical Studies of Conflict Project (ESOC) Working Papers 11, Empirical Studies of Conflict Project.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," OxCarre Working Papers 210, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," The Warwick Economics Research Paper Series (TWERPS) 1166, University of Warwick, Department of Economics.
- Thiemo Fetzer & Stephan Kyburz, 2019. "Cohesive Institutions and Political Violence," Working Papers 503, Center for Global Development.
- Thiemo Fetzer & Stephan Kyburz, 2018. "Cohesive Institutions and Political Violence," HiCN Working Papers 271, Households in Conflict Network.
- Fetzer, Thiemo & Kyburz, Stephan, 2018. "Cohesive Institutions and Political Violence," CAGE Online Working Paper Series 377, Competitive Advantage in the Global Economy (CAGE).
- Dang, Hai-Anh & Carleto, Gero & Gourlay, Sydney & Abanokova, Kseniya, 2023.
"Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda,"
2023 Annual Meeting, July 23-25, Washington D.C.
335648, Agricultural and Applied Economics Association.
- Dang, Hai-Anh H & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," IZA Discussion Papers 17064, Institute of Labor Economics (IZA).
- Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- Marte C.W. Solheim & Ron Boschma & Sverre Herstad, 2018. "Related variety, unrelated variety and the novelty content of firm innovation in urban and non-urban locations," Papers in Evolutionary Economic Geography (PEEG) 1836, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2018.
- Sascha O. Becker & Thiemo Fetzer, 2018.
"Has Eastern European Migration Impacted UK-born Workers?,"
CAGE Online Working Paper Series
376, Competitive Advantage in the Global Economy (CAGE).
- Becker, Sascha O. & Fetzer, Thiemo, 2018. "Has Eastern European Migration Impacted UK-born Workers?," The Warwick Economics Research Paper Series (TWERPS) 1165, University of Warwick, Department of Economics.
- Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
- Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
- Ernest Miguélez & Rosina Moreno, 2013.
"Do Labour Mobility and Technological Collaborations Foster Geographical Knowledge Diffusion? The Case of European Regions,"
Growth and Change, Wiley Blackwell, vol. 44(2), pages 321-354, June.
- Ernest Miguélez & Rosina Moreno, 2013. "“Do labour mobility and technological collaborations foster geographical knowledge diffusion? The case of European regions”," IREA Working Papers 201314, University of Barcelona, Research Institute of Applied Economics, revised Jul 2013.
- Ernest Miguélez & Rosina Moreno, 2013. "“Do labour mobility and technological collaborations foster geographical knowledge diffusion? The case of European regions”," AQR Working Papers 201306, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2013.
- Ernest Miguélez & Rosina Moreno, 2013. "Do Labour Mobility and Technological Collaborations Foster Geographical Knowledge Diffusion? The Case of European Regions," Post-Print halshs-03910281, HAL.
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Gharad Bryan & Dean Karlan & Adam Osman, 2024.
"Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment,"
American Economic Review, American Economic Association, vol. 114(9), pages 2825-2860, September.
- Gharad T. Bryan & Dean Karlan & Adam Osman, 2021. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," NBER Working Papers 29311, National Bureau of Economic Research, Inc.
- Bryan, Gharad & Karlan, Dean & Osman, Adam, 2024. "Big loans to small businesses: predicting winners and losers in an entrepreneurial lending experiment," LSE Research Online Documents on Economics 120637, London School of Economics and Political Science, LSE Library.
- Bryan, Gharad & Karlan, Dean & Osman, Adam, 2022. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," CEPR Discussion Papers 16573, C.E.P.R. Discussion Papers.
- Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
- Ron Boschma & Ron Martin, 2010.
"The Aims and Scope of Evolutionary Economic Geography,"
Chapters, in: Ron Boschma & Ron Martin (ed.), The Handbook of Evolutionary Economic Geography, chapter 1,
Edward Elgar Publishing.
- Ron Boschma & Ron Martin, 2010. "The Aims and Scope of Evolutionary Economic Geography," Papers in Evolutionary Economic Geography (PEEG) 1001, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jan 2010.
- Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
- Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
More about this item
Keywords
; ; ; ; ;JEL classification:
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- L6 - Industrial Organization - - Industry Studies: Manufacturing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-20-01191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/ebl/ecbull/eb-20-01191.html