IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v11y2010i3p585-596.html
   My bibliography  Save this article

Distribution Approximations for Cusum and Cusumsq Statistics

Author

Listed:
  • Reza Habibi

Abstract

The cumulative sum (cusum) is an important statistics in testing for a change point. This paper is concerned with the distribution approximations to the cusum statistic under the null and alternative hypotheses. We also consider distribution approximations for the cumulative sum of squares (cusumsq) test statistics. Finally, a discussion section is given.

Suggested Citation

  • Reza Habibi, 2010. "Distribution Approximations for Cusum and Cusumsq Statistics," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 11(3), pages 585-596, December.
  • Handle: RePEc:csb:stintr:v:11:y:2010:i:3:p:585-596
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v11_2010_i3_n9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    2. Eric Hillebrand & Gunther Schnabl, 2003. "The Effects of Japanese Foreign Exchange Intervention: GARCH Estimation and Change Point Detection," Departmental Working Papers 2003-09, Department of Economics, Louisiana State University.
    3. Halunga, Andreea G. & Osborn, Denise R. & Sensier, Marianne, 2009. "Changes in the order of integration of US and UK inflation," Economics Letters, Elsevier, vol. 102(1), pages 30-32, January.
    4. Denis Conniffe & John E. Spencer, 1999. "Approximating the Distribution of the Maximum Partial Sum of Normal Deviates," Papers WP102, Economic and Social Research Institute (ESRI).
    5. Andreu Sansó & Vicent Aragó & Josep Lluís Carrion, 2003. "Testing for Changes in the Unconditional Variance of Financial Time Series," DEA Working Papers 5, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Conniffe & John E. Spencer, 2000. "Approximating the Distribution of the R/s Statistic," The Economic and Social Review, Economic and Social Studies, vol. 31(3), pages 237-248.
    2. Habibi Reza, 2011. "A note on approximating distribution functions of cusum and cusumsq tests," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 1-10, January.
    3. Ai Deng & Pierre Perron, 2005. "The Limit Distribution of the CUSUM of Square Test Under Genreal MIxing Conditions," Boston University - Department of Economics - Working Papers Series WP2005-046, Boston University - Department of Economics.
    4. Conniffe, Denis & Kelly, Robert, 2011. "Structural Breaks - An Instrumental Variable Approach," Research Technical Papers 4/RT/11, Central Bank of Ireland.
    5. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    6. repec:ers:journl:v:xxiv:y:2021:i:4:p:370-395 is not listed on IDEAS
    7. Gunther Schnabl & Christian Danne, 2005. "The Changing Role of the Yen/Dollar Exchange Rate for Japanese Monetary Policy," International Finance 0503001, University Library of Munich, Germany.
    8. Kim, Suk-Joong, 2007. "Intraday evidence of efficacy of 1991-2004 Yen intervention by the Bank of Japan," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(4), pages 341-360, October.
    9. Cashin, Paul & Mohaddes, Kamiar & Raissi, Maziar & Raissi, Mehdi, 2014. "The differential effects of oil demand and supply shocks on the global economy," Energy Economics, Elsevier, vol. 44(C), pages 113-134.
    10. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    11. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    12. Luger, Richard, 2001. "A modified CUSUM test for orthogonal structural changes," Economics Letters, Elsevier, vol. 73(3), pages 301-306, December.
    13. Dilip Kumar & S. Maheswaran, 2013. "Return, Volatility and Risk Spillover from Oil Prices and the US Dollar Exchange Rate to the Indian Industrial Sectors," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 7(1), pages 61-91, February.
    14. Jérôme Creel & Francesco Saraceno, 2008. "Automatic Stabilisation, Discretionary Policy and the Stability Pact," SciencePo Working papers Main hal-00973049, HAL.
    15. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    16. Kadow, Alexander & Cerrato, Mario & MacDonald, Ronald & Straetmans, Stefan, 2013. "Does the euro dominate Central and Eastern European money markets?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 700-718.
    17. João Pedro Pereira & Vasco Pesquita & Paulo M. M. Rodrigues & António Rua, 2019. "Market integration and the persistence of electricity prices," Empirical Economics, Springer, vol. 57(5), pages 1495-1514, November.
    18. Gabriel Zsurkis & JoÃo Nicolau & Paulo M. M. Rodrigues, 2021. "A Re‐Examination of Inflation Persistence Dynamics in OECD Countries: A New Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 935-959, August.
    19. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    20. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    21. Kruse, Robinson & Sibbertsen, Philipp, 2012. "Long memory and changing persistence," Economics Letters, Elsevier, vol. 114(3), pages 268-272.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:11:y:2010:i:3:p:585-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek The email address of this maintainer does not seem to be valid anymore. Please ask Beata Witek to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.