IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v69y2023i10id292-2023-pse.html
   My bibliography  Save this article

Yield of sweet corn and sunflower as affected by different cultivation methods and fertilisation schemes

Author

Listed:
  • Attila Vad

    (Institutes for Agricultural Research and Educational Farm (IAREF), Farm and Regional Research Institutes of Debrecen (RID), Experimental Station of Látókép, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)

  • András Szabó

    (Department of Crop Production, Applied Ecology and Plant Breeding, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)

  • Oqba Basal

    (Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)

  • Szilvia Veres

    (Department of Applied Plant Biology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)

Abstract

If appropriately applied, tillage can positively affect the crop's yield by enhancing the soil's physical properties. Fertilisation also has beneficial effects on yield if applied at efficient rates by increasing available-to-uptake nutrients and improving soil's chemical properties. A field experiment was carried out in Debrecen, Hungary, to evaluate the individual and the interaction effects of these 2 factors on sunflower and sweet corn. The cultivation methods applied were ploughing (C1), direct drilling (C2) and deep loosening (C3). In addition, 3 fertilisation rates were applied to each cultivation system: F1 (control, no fertilisation); F2 (100:50:70) kg NPK/ha and F3 (150:100:120) kg NPK/ha in a randomised complete block design (RCBD) with 4 replicates. Our results showed that fertilisation did not affect the yield of sweet corn measurably. However, C1 resulted in the highest yield, whereas C2 and C3 resulted in relatively similar yields. In sunflowers, the yields of both C1 and C2 were higher than that of C3. No significant differences were recorded between C1 and C2. The yields of both F2 and F3 were higher than the yield of F1. The differences between F2 and F3 were insignificant. It could be concluded that the cultivation method is a determining factor in the yield of sweet corn. The effects of both fertilisation and cultivation treatments were more detectable in sunflowers. The differences between the two fertilisation rates (F2 and F3) were insignificant in both species, indicating that the extra fertilisation levels might be unnecessary.

Suggested Citation

  • Attila Vad & András Szabó & Oqba Basal & Szilvia Veres, 2023. "Yield of sweet corn and sunflower as affected by different cultivation methods and fertilisation schemes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(10), pages 480-485.
  • Handle: RePEc:caa:jnlpse:v:69:y:2023:i:10:id:292-2023-pse
    DOI: 10.17221/292/2023-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/292/2023-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/292/2023-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/292/2023-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karen Denisse Ordoñez-Morales & Martin Cadena-Zapata & Alejandro Zermeño-González & Santos Campos-Magaña, 2019. "Effect of Tillage Systems on Physical Properties of a Clay Loam Soil under Oats," Agriculture, MDPI, vol. 9(3), pages 1-14, March.
    2. Aboudrare, A. & Debaeke, P. & Bouaziz, A. & Chekli, H., 2006. "Effects of soil tillage and fallow management on soil water storage and sunflower production in a semi-arid Mediterranean climate," Agricultural Water Management, Elsevier, vol. 83(3), pages 183-196, June.
    3. Barontini, Federica & Simone, Marco & Triana, Federico & Mancini, Andrea & Ragaglini, Giorgio & Nicolella, Cristiano, 2015. "Pilot-scale biofuel production from sunflower crops in central Italy," Renewable Energy, Elsevier, vol. 83(C), pages 954-962.
    4. García-López, J. & Lorite, I.J. & García-Ruiz, R. & Ordoñez, R. & Dominguez, J., 2016. "Yield response of sunflower to irrigation and fertilization under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 176(C), pages 151-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attila Vad & András Szabó & Oqba Basal & Szilvia Veres, . "Yield of sweet corn and sunflower as affected by different cultivation methods and fertilisation schemes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 0.
    2. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    3. Wang, Shulan & Wang, Hao & Zhang, Yuanhong & Wang, Rui & Zhang, Yujiao & Xu, Zonggui & Jia, Guangcan & Wang, Xiaoli & Li, Jun, 2018. "The influence of rotational tillage on soil water storage, water use efficiency and maize yield in semi-arid areas under varied rainfall conditions," Agricultural Water Management, Elsevier, vol. 203(C), pages 376-384.
    4. Massamba Diop & Ngonidzashe Chirinda & Adnane Beniaich & Mohamed El Gharous & Khalil El Mejahed, 2022. "Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands," Sustainability, MDPI, vol. 14(20), pages 1-29, October.
    5. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    6. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    7. Hadria, R. & Duchemin, B. & Baup, F. & Le Toan, T. & Bouvet, A. & Dedieu, G. & Le Page, M., 2009. "Combined use of optical and radar satellite data for the detection of tillage and irrigation operations: Case study in Central Morocco," Agricultural Water Management, Elsevier, vol. 96(7), pages 1120-1127, July.
    8. Fatma Baraket & Manuel González-Rosado & Nadhem Brahim & Núria Roca & Hadda Ben Mbarek & Marcin Świtoniak & Rayda Chaker & Ángel Sánchez-Bellón & Hafedh Rigane & Kamel Gargouri & Luis Parras-Alcántara, 2021. "Short and Long-Term Effect of Land Use and Management on Soil Organic Carbon Stock in Semi-Desert Areas of North Africa-Tunisia," Agriculture, MDPI, vol. 11(12), pages 1-15, December.
    9. Mzezewa, J. & Gwata, E.T. & van Rensburg, L.D., 2011. "Yield and seasonal water productivity of sunflower as affected by tillage and cropping systems under dryland conditions in the Limpopo Province of South Africa," Agricultural Water Management, Elsevier, vol. 98(10), pages 1641-1648, August.
    10. López-Vicente, Manuel & Álvarez, Sara, 2018. "Stability and patterns of topsoil water content in rainfed vineyards, olive groves, and cereal fields under different soil and tillage conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 167-176.
    11. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    12. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Godwin Iloabuchi Nebo & Alen Manyevere & Tesfay Araya & Johan van Tol, 2020. "Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    14. Aghel, Babak & Mohadesi, Majid & Ansari, Ahmadreza & Maleki, Mahmoud, 2019. "Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 142(C), pages 207-214.
    15. Che Mat, S. & Idroas, M.Y. & Teoh, Y.H. & Hamid, M.F. & Sharudin, H. & Pahmi, M.A.A.H., 2022. "Optimization of ternary blends among refined palm oil-hexanol-melaleuca cajuputi oil and engine emissions analysis of the blends," Renewable Energy, Elsevier, vol. 196(C), pages 451-461.
    16. Frank, F.C. & Viglizzo, E.F., 2012. "Water use in rain-fed farming at different scales in the Pampas of Argentina," Agricultural Systems, Elsevier, vol. 109(C), pages 35-42.
    17. Mehmet Emin Bilgili & Yasemin Vurarak & Ali Aybek, 2023. "Determination of Performance of No-Till Seeder and Stubble Cutting Prototype," Agriculture, MDPI, vol. 13(2), pages 1-15, January.
    18. Jianyu Yuan & Mahran Sadiq & Nasir Rahim & Majid Mahmood Tahir & Yunliang Liang & Macao Zhuo & Lijuan Yan & Aqila Shaheen & Basharat Mahmood & Guang Li, 2023. "Changes in Soil Properties and Crop Yield under Sustainable Conservation Tillage Systems in Spring Wheat Agroecosystems," Land, MDPI, vol. 12(6), pages 1-23, June.
    19. Nassi o Di Nasso, N. & Bosco, S. & Di Bene, C. & Coli, A. & Mazzoncini, M. & Bonari, E., 2011. "Energy efficiency in long-term Mediterranean cropping systems with different management intensities," Energy, Elsevier, vol. 36(4), pages 1924-1930.
    20. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umair, 2020. "Evaluating Selected Soil Physical Properties Under Different Soil Tillage Systems In Arid Southeast Rawalpindi, Pakistan," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 4(2), pages 56-60:4, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:69:y:2023:i:10:id:292-2023-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.