IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v30y2024i3p299-313n1007.html
   My bibliography  Save this article

The slice sampler and centrally symmetric distributions

Author

Listed:
  • Planas Christophe

    (European Commission, Joint Research Centre, Ispra, Italy)

  • Rossi Alessandro

    (European Commission, Joint Research Centre, Ispra, Italy)

Abstract

We show that the slice sampler generates Markov chains whose variables are mean independent and thus uncorrelated when the target density is centrally symmetric. Skewness instead boosts correlations. Popular implementation algorithms such as stepping-out and multivariate-sampling-with-hyperrectangles add statistical inefficiency, the first in case of multimodality, the second in all circumstances. A new sampler which exploits these structural and algorithmic characteristics to reduce the variance of Monte Carlo estimates is experimented in several sampling problems. An insight into the properties of the product slice sampler is also provided.

Suggested Citation

  • Planas Christophe & Rossi Alessandro, 2024. "The slice sampler and centrally symmetric distributions," Monte Carlo Methods and Applications, De Gruyter, vol. 30(3), pages 299-313.
  • Handle: RePEc:bpj:mcmeap:v:30:y:2024:i:3:p:299-313:n:1007
    DOI: 10.1515/mcma-2024-2012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2024-2012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2024-2012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    2. Harman, Radoslav & Lacko, Vladimír, 2010. "On decompositional algorithms for uniform sampling from n-spheres and n-balls," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2297-2304, November.
    3. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    4. Li, Junye, 2011. "Volatility components, leverage effects, and the return-volatility relations," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1530-1540, June.
    5. Sudipto Banerjee, 2005. "On Geodetic Distance Computations in Spatial Modeling," Biometrics, The International Biometric Society, vol. 61(2), pages 617-625, June.
    6. Dunson, David B. & Xing, Chuanhua, 2009. "Nonparametric Bayes Modeling of Multivariate Categorical Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1042-1051.
    7. Antonietta Mira & Luke Tierney, 2002. "Efficiency and Convergence Properties of Slice Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 1-12, March.
    8. Leemis, Lawrence M. & McQueston, Jacquelyn T., 2008. "Univariate Distribution Relationships," The American Statistician, American Statistical Association, vol. 62, pages 45-53, February.
    9. Yang, Zhenlin, 2006. "A modified family of power transformations," Economics Letters, Elsevier, vol. 92(1), pages 14-19, July.
    10. Gareth O. Roberts & Jeffrey S. Rosenthal, 1999. "Convergence of Slice Sampler Markov Chains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 643-660.
    11. George S. Fishman, 1999. "An Analysis of Swendsen–Wang and Related Sampling Methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 623-641.
    12. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. Li, Yanxin & Walker, Stephen G., 2023. "A latent slice sampling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    4. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2019. "Threshold Stochastic Conditional Duration Model for Financial Transaction Data," JRFM, MDPI, vol. 12(2), pages 1-21, May.
    5. Anagh Chattopadhyay & Soudeep Deb, 2024. "A spatio-temporal model for binary data and its application in analyzing the direction of COVID-19 spread," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(4), pages 823-851, December.
    6. Minjung Kyung & Jeff Gill & George Casella, 2011. "Sampling schemes for generalized linear Dirichlet process random effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(3), pages 259-290, August.
    7. Majid Khaledi & Firoozeh Rivaz, 2009. "Empirical Bayes spatial prediction using a Monte Carlo EM algorithm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 35-47, March.
    8. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    9. Antonietta Mira & Daniel J. Sargent, 2003. "A new strategy for speeding Markov chain Monte Carlo algorithms," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 49-60, February.
    10. Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    11. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
    12. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    13. Hang J. Kim & Jörg Drechsler & Katherine J. Thompson, 2021. "Synthetic microdata for establishment surveys under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 255-281, January.
    14. Vasilis Syrgkanis & Elie Tamer & Juba Ziani, 2017. "Inference on Auctions with Weak Assumptions on Information," Papers 1710.03830, arXiv.org, revised Mar 2018.
    15. Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
    16. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    17. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
    18. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    19. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    20. Rojas-Perilla, Natalia & Pannier, Sören & Schmid, Timo & Tzavidis, Nikos, 2017. "Data-driven transformations in small area estimation," Discussion Papers 2017/30, Free University Berlin, School of Business & Economics.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:30:y:2024:i:3:p:299-313:n:1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.