IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v12y2006i3p191-209n6.html
   My bibliography  Save this article

First Order Strong Approximations of Jump Diffusions

Author

Listed:
  • Bruti-Liberati Nicola
  • Nikitopoulos-Sklibosios Christina
  • Platen Eckhard

    (University of Technology Sydney, School of Finance & Economics and Department of Mathematical Sciences, PO Box 123, Broadway, NSW, 2007, Australia)

Abstract

This paper presents new results on strong numerical schemes, which are appropriate for scenario analysis, filtering and hedge simulation, for stochastic differential equations (SDEs) of jump-diffusion type. It provides first order strong approximations for jump-diffusion SDEs driven by Wiener processes and Poisson random measures. The paper covers first order derivative-free, drift-implicit and jump-adapted strong approximations. Moreover, it provides a commutativity condition under which the computational effort of first order strong schemes is independent of the total intensity of the jump measure. Finally, a numerical study on the accuracy of several strong schemes applied to the Merton model is presented.

Suggested Citation

  • Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
  • Handle: RePEc:bpj:mcmeap:v:12:y:2006:i:3:p:191-209:n:6
    DOI: 10.1515/156939606778705191
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/156939606778705191
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/156939606778705191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Carl Chiarella & Christina Nikitopoulos Sklibosios & Erik Schlogl, 2007. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton Models with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 365-399.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cremers, Martijn & Driessen, Joost & Maenhout, Pascal & Weinbaum, David, 2008. "Individual stock-option prices and credit spreads," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2706-2715, December.
    2. Albert S. (Pete) & Karamfil Todorov, 2023. "The cumulant risk premium," BIS Working Papers 1128, Bank for International Settlements.
    3. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    4. Mo, Henry & Wu, Liuren, 2007. "International capital asset pricing: Evidence from options," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 465-498, September.
    5. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    6. Lin, Tse-Chun & Liu, Jinyu & Ni, Xiaoran, 2022. "Foreign bank entry deregulation and stock market stability: Evidence from staggered regulatory changes," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 185-207.
    7. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    8. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    9. Dufour, Jean-Marie & García, René & Taamouti, Abderrahim, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    10. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    11. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    12. repec:ebl:ecbull:v:3:y:2008:i:68:p:1-20 is not listed on IDEAS
    13. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    14. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    15. Nicolae Garleanu & Lasse Heje Pedersen & Allen M. Poteshman, 2009. "Demand-Based Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 22(10), pages 4259-4299, October.
    16. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    17. Li, Guangzhong & Zhu, Jiaqing & Li, Jie, 2016. "Understanding bilateral exchange rate risks," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 103-129.
    18. Oleg Bondarenko & Iñaki Longarela, 2009. "A general framework for the derivation of asset price bounds: an application to stochastic volatility option models," Review of Derivatives Research, Springer, vol. 12(2), pages 81-107, July.
    19. G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
    20. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    21. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:12:y:2006:i:3:p:191-209:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.