IDEAS home Printed from
   My bibliography  Save this article

Mixed-Effects Poisson Regression Models for Meta-Analysis of Follow-Up Studies with Constant or Varying Durations


  • Bagos Pantelis G

    (University of Central Greece)

  • Nikolopoulos Georgios K

    (Hellenic Centre for Disease Control and Prevention)


We present a framework for meta-analysis of follow-up studies with constant or varying duration using the binary nature of the data directly. We use a generalized linear mixed model framework with the Poisson likelihood and the log link function. We fit models with fixed and random study effects using Stata for performing meta-analysis of follow-up studies with constant or varying duration. The methods that we present are capable of estimating all the effect measures that are widely used in such studies such as the Risk Ratio, the Risk Difference (in case of studies with constant duration), as well as the Incidence Rate Ratio and the Incidence Rate Difference (for studies of varying duration). The methodology presented here naturally extends previously published methods for meta-analysis of binary data in a generalized linear mixed model framework using the Poisson likelihood. Simulation results suggest that the method is uniformly more powerful compared to summary based methods, in particular when the event rate is low and the number of studies is small. The methods were applied in several already published meta-analyses with very encouraging results. The methods are also directly applicable to individual patients' data offering advanced options for modeling heterogeneity and confounders. Extensions of the models for more complex situations, such as competing risks models or recurrent events are also discussed. The methods can be implemented in standard statistical software and illustrative code in Stata is given in the appendix.

Suggested Citation

  • Bagos Pantelis G & Nikolopoulos Georgios K, 2009. "Mixed-Effects Poisson Regression Models for Meta-Analysis of Follow-Up Studies with Constant or Varying Durations," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-35, June.
  • Handle: RePEc:bpj:ijbist:v:5:y:2009:i:1:n:21

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:5:y:2009:i:1:n:21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.