IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v34y2019i1p19-34n5.html
   My bibliography  Save this article

Optimal Control of a Dispatchable Energy Source for Wind Energy Management

Author

Listed:
  • D’Amico Guglielmo

    (Department of Pharmacy, University “G. D’Annunzio” of Chieti-Pescara, 66013Chieti, Italy)

  • Petroni Filippo

    (Department of Management, Università Politecnica delle Marche, 60121Ancona, Italy)

  • Sobolewski Robert Adam

    (Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Bialystok, Poland)

Abstract

The major drawback of wind energy relies in its variability in time, which necessitates specific strategies to be settled. One such strategy can be the coordination of wind power production with a co-located power generation of dispatchable energy source (DES), e.g., thermal power station, combined heat and power plant, gas turbine or compressed air energy storage. In this paper, we consider an energy producer that generates power by means of a wind park and of a DES and sells the produced energy to an isolated grid. We determine the optimal quantity of energy produced by a DES, given the unit cost of this energy, that a power producer should buy and use to hedge against the risk inherent in the production of energy through wind turbines. We determine the optimal quantity by solving a static optimization problem taking into account the possible dependence between the amount of energy produced by wind turbines and electricity prices by using a copula function. Several particular cases are studied that allow the determination of the optimal solution in an analytical closed form. Finally, a numerical example concerning a real 48 MW wind farm located in Poland and Polish Power Exchange shows the possibility of implementing the model in real-life problems.

Suggested Citation

  • D’Amico Guglielmo & Petroni Filippo & Sobolewski Robert Adam, 2019. "Optimal Control of a Dispatchable Energy Source for Wind Energy Management," Stochastics and Quality Control, De Gruyter, vol. 34(1), pages 19-34, June.
  • Handle: RePEc:bpj:ecqcon:v:34:y:2019:i:1:p:19-34:n:5
    DOI: 10.1515/eqc-2019-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc-2019-0001
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc-2019-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Guglielmo D’Amico & Filippo Petroni & Flavio Prattico, 2015. "Performance Analysis of Second Order Semi-Markov Chains: An Application to Wind Energy Production," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 781-794, September.
    3. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2017. "Insuring wind energy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 542-553.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D’Amico & Fulvio Gismondi & Filippo Petroni, 2020. "Insurance Contracts for Hedging Wind Power Uncertainty," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    2. Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
    3. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    5. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    6. Đukan, Mak & Kitzing, Lena, 2023. "A bigger bang for the buck: The impact of risk reduction on renewable energy support payments in Europe," Energy Policy, Elsevier, vol. 173(C).
    7. Sajjad Khan & Shahzad Aslam & Iqra Mustafa & Sheraz Aslam, 2021. "Short-Term Electricity Price Forecasting by Employing Ensemble Empirical Mode Decomposition and Extreme Learning Machine," Forecasting, MDPI, vol. 3(3), pages 1-18, June.
    8. Tim Janke & Florian Steinke, 2019. "Forecasting the Price Distribution of Continuous Intraday Electricity Trading," Energies, MDPI, vol. 12(22), pages 1-14, November.
    9. Xiaoming Xie & Meiping Li & Du Zhang, 2021. "A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning," Energies, MDPI, vol. 14(21), pages 1-14, November.
    10. Maleki, Neda & Lundström, Oxana & Musaddiq, Arslan & Jeansson, John & Olsson, Tobias & Ahlgren, Fredrik, 2024. "Future energy insights: Time-series and deep learning models for city load forecasting," Applied Energy, Elsevier, vol. 374(C).
    11. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    12. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    13. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    14. Fanelli, Viviana & Maddalena, Lucia & Musti, Silvana, 2016. "Modelling electricity futures prices using seasonal path-dependent volatility," Applied Energy, Elsevier, vol. 173(C), pages 92-102.
    15. Fahimeh Aliakbari Nouri & Mohsen Shafiei Nikabadi & Laya Olfat, 2024. "Social efficiency forecasting based on social sustainability practices in the service supply chain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14835-14858, June.
    16. Arne Vogler & Florian Ziel, "undated". "On The Evaluation Of Binary Event Probability Predictions In Electricity Price Forecasting," EWL Working Papers 1911, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    17. Jannik Schütz Roungkvist & Peter Enevoldsen & George Xydis, 2020. "High-Resolution Electricity Spot Price Forecast for the Danish Power Market," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    18. Balagula, Yuri, 2020. "Forecasting daily spot prices in the Russian electricity market with the ARFIMA model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 89-101.
    19. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    20. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:34:y:2019:i:1:p:19-34:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.