IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v11y2023i1p33n1.html
   My bibliography  Save this article

Adaptive normalization for IPW estimation

Author

Listed:
  • Khan Samir

    (Department of Statistics, Stanford University, Stanford, CA 94305, United States)

  • Ugander Johan

    (Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, United States)

Abstract

Inverse probability weighting (IPW) is a general tool in survey sampling and causal inference, used in both Horvitz–Thompson estimators, which normalize by the sample size, and Hájek/self-normalized estimators, which normalize by the sum of the inverse probability weights. In this work, we study a family of IPW estimators, first proposed by Trotter and Tukey in the context of Monte Carlo problems, that are normalized by an affine combination of the sample size and a sum of inverse weights. We show how selecting an estimator from this family in a data-dependent way to minimize asymptotic variance leads to an iterative procedure that converges to an estimator with connections to regression control methods. We refer to such estimators as adaptively normalized estimators. For mean estimation in survey sampling, the adaptively normalized estimator has asymptotic variance that is never worse than the Horvitz–Thompson and Hájek estimators. Going further, we show that adaptive normalization can be used to propose improvements of the augmented IPW (AIPW) estimator, average treatment effect (ATE) estimators, and policy learning objectives. Appealingly, these proposals preserve both the asymptotic efficiency of AIPW and the regret bounds for policy learning with IPW objectives, and deliver consistent finite sample improvements in simulations for all three of mean estimation, ATE estimation, and policy learning.

Suggested Citation

  • Khan Samir & Ugander Johan, 2023. "Adaptive normalization for IPW estimation," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-33, January.
  • Handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:33:n:1
    DOI: 10.1515/jci-2022-0019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2022-0019
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2022-0019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qin, Jing & Zhang, Biao & Leung, Denis H. Y., 2009. "Empirical Likelihood in Missing Data Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1492-1503.
    2. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    3. Shanike J. Smart & Solomon W. Polachek, 2024. "COVID-19 vaccine and risk-taking," Journal of Risk and Uncertainty, Springer, vol. 68(1), pages 25-49, February.
    4. Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
    5. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    6. Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "Wage premium of Communist Party membership: Evidence from China," Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
    7. Daniel Burkhard & Christian P. R. Schmid & Kaspar Wüthrich, 2019. "Financial incentives and physician prescription behavior: Evidence from dispensing regulations," Health Economics, John Wiley & Sons, Ltd., vol. 28(9), pages 1114-1129, September.
    8. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    9. Özler, Berk & Çelik, Çiğdem & Cunningham, Scott & Cuevas, P. Facundo & Parisotto, Luca, 2021. "Children on the move: Progressive redistribution of humanitarian cash transfers among refugees," Journal of Development Economics, Elsevier, vol. 153(C).
    10. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    11. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    12. Gelter, Martin & Siems, Mathias, 2024. "Elective corporate governance: Does board choice matter?," International Review of Law and Economics, Elsevier, vol. 78(C).
    13. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    14. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    15. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    16. Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
    17. Dmitry Arkhangelsky & Guido W. Imbens, 2019. "Doubly Robust Identification for Causal Panel Data Models," Papers 1909.09412, arXiv.org, revised Feb 2022.
    18. Tristan Le Cotty & Elodie Maître d'Hôtel & Julie Subervie, 2019. "Inventory credit to enhance food security in Africa," Working Papers hal-02018715, HAL.
    19. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
    20. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:33:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.