IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i3ne468.html
   My bibliography  Save this article

Syngas production from thermochemical conversion of mixed food waste: A review

Author

Listed:
  • Sanjeev Yadav
  • Priyanka Katiyar
  • Mohammed K. Al Mesfer
  • Mohd Danish

Abstract

Lately, the generation of leftover food or cooked food waste has turned out to be a critical issue and its disposal in an environmental friendly way has been a challenge. This food waste is being sent for incineration and landfilling which results in a significant contribution to environmental pollution. Therefore, alternative methods for processing food waste in an environmentally benign way have been explored by many researchers. Thermochemical methods are one of those methods and are found to be promising for not only handling the food waste in an ecological way but also producing renewable energy efficiently in the form of bio‐oil and syngas along with a solid byproduct, that is, biochar. However, the generation of syngas is favored by only two thermochemical processes, fast pyrolysis, and gasification. Some derived processes such as co‐pyrolysis, and co‐gasification can also generate syngas. All these processes for syngas generation differ from each other in terms of process conditions (temperature, reaction agents, and residence time) and syngas quality generated (amount of syngas produced, syngas composition, and heating capacity). Additionally, supercritical water gasification is the latest process developed for processing food waste to generate syngas with much higher hydrogen fraction; however, it produces syngas with less yield and involves high operational costs. This article is categorized under: Sustainable Energy > Bioenergy Emerging Technologies > New Fuels Sustainable Development > Energy‐Water‐Food Nexus

Suggested Citation

  • Sanjeev Yadav & Priyanka Katiyar & Mohammed K. Al Mesfer & Mohd Danish, 2023. "Syngas production from thermochemical conversion of mixed food waste: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e468
    DOI: 10.1002/wene.468
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.468
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    2. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    3. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    4. Park, Chanyeong & Choi, Heeyoung & Andrew Lin, Kun-Yi & Kwon, Eilhann E. & Lee, Jechan, 2021. "COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dina Aboelela & Habibatallah Saleh & Attia M. Attia & Yasser Elhenawy & Thokozani Majozi & Mohamed Bassyouni, 2023. "Recent Advances in Biomass Pyrolysis Processes for Bioenergy Production: Optimization of Operating Conditions," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    2. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    3. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    4. George Attard & Agnello Alessandro & Antonio Comparetti & Oliver Fenech & Carlo Greco & Denise Grima Connell, 2019. "Manure as a potential source of renewable energy: The behaviour and characterisation of biofuels generated from three animal manure types when subjected to pyrolysis," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 331-344.
    5. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    7. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    8. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    9. Daya Shankar Pandey & Giannis Katsaros & Christian Lindfors & James J. Leahy & Savvas A. Tassou, 2019. "Fast Pyrolysis of Poultry Litter in a Bubbling Fluidised Bed Reactor: Energy and Nutrient Recovery," Sustainability, MDPI, vol. 11(9), pages 1-17, May.
    10. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    11. Katarzyna Wystalska & Anna Kwarciak-Kozłowska, 2023. "Utilization of Digestate from Agricultural and Food Waste for the Production of Biochar Used to Remove Methylene Blue," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    12. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    13. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    14. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    16. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    17. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    18. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    20. Zhang, Yuming & Yu, Deping & Li, Wangliang & Gao, Shiqiu & Xu, Guangwen & Zhou, Huaqun & Chen, Jing, 2013. "Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue," Applied Energy, Elsevier, vol. 112(C), pages 1318-1325.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.