IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v39y2023i2p171-179.html
   My bibliography  Save this article

The four main elements of dynamic complexity

Author

Listed:
  • Hakan Yasarcan

Abstract

Accumulation processes, feedback loops, nonlinearities, and delays are the four main elements of dynamic complexity. Knowing about and understanding these elements is necessary in conceptualizing and constructing dynamic feedback models. Therefore, the elements are major topics when teaching system dynamics. This short note aims to explain the relations of these elements with each other in the hope of providing a perspective that can help improve the understanding of students of system dynamics. We also suggest an order of presentation of these elements in teaching based on the relations between them. © 2023 System Dynamics Society.

Suggested Citation

  • Hakan Yasarcan, 2023. "The four main elements of dynamic complexity," System Dynamics Review, System Dynamics Society, vol. 39(2), pages 171-179, April.
  • Handle: RePEc:bla:sysdyn:v:39:y:2023:i:2:p:171-179
    DOI: 10.1002/sdr.1731
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1731
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sterman, John., 1994. "Learning in and about complex systems," Working papers 3660-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jinfeng & Dimov, Dimo, 2023. "A system dynamics modelling of entrepreneurship and growth within firms," Journal of Business Venturing, Elsevier, vol. 38(3).
    2. Laura Schmitt Olabisi & Amadou Sidibé, 2023. "Observations from a system dynamics modeling field school in Mali," System Dynamics Review, System Dynamics Society, vol. 39(1), pages 80-94, January.
    3. Day Yang Liu & Wen Chun Tsai & Pei Leen Liu & Chung Yi Fang, 2021. "Determinants of sales revenue in innovation diffusion effects of Taiwan sports lottery during the FIFA World Cup 2018," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 43-58, June.
    4. Oliva, Rogelio, 2003. "Model calibration as a testing strategy for system dynamics models," European Journal of Operational Research, Elsevier, vol. 151(3), pages 552-568, December.
    5. Hazhir Rahmandad & Nelson Repenning, 2016. "Capability erosion dynamics," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 649-672, April.
    6. Katarzyna Tworek & Katarzyna Walecka-Jankowska & Anna Zgrzywa-Ziemak, 2019. "The role of information systems in shaping integrative logic for business sustainability," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 125-146.
    7. Natalia Ciobanu & Ali Kerem Saysel, 2021. "Using social–ecological inventory and group model building for resilience assessment to climate change in a network governance setting: a case study from Ikel watershed in Moldova," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 1065-1085, January.
    8. Rafael Marcos-Sánchez & Daniel Ferrández & Carlos Morón, 2022. "Systems Thinking for Sustainability Education in Building and Business Administration and Management Degrees," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    9. Meri Duryan & Dragan Nikolik & Godefridus Merode & Leopold M. G. Curfs, 2015. "Reflecting on the efficacy of cognitive mapping for decision-making in intellectual disability care: a case study," International Journal of Health Planning and Management, Wiley Blackwell, vol. 30(2), pages 127-144, April.
    10. Florian Kapmeier, 2020. "Reflections on developing a simulation model on sustainable and healthy diets for decision makers: Comment on the paper by Kopainsky," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 928-935, November.
    11. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    12. Gibson, Faison P., 2000. "Feedback Delays: How Can Decision Makers Learn Not to Buy a New Car Every Time the Garage Is Empty?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 141-166, September.
    13. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    14. Sarah Gerritsen & Sophia Harré & David Rees & Ana Renker-Darby & Ann E. Bartos & Wilma E. Waterlander & Boyd Swinburn, 2020. "Community Group Model Building as a Method for Engaging Participants and Mobilising Action in Public Health," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    15. David C. Lane, 2012. "What Is a ‘Policy Insight’?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 29(6), pages 590-595, November.
    16. Iván Barreda-Tarrazona & Nikolaos Georgantzís & Constantine Manasakis & Evangelos Mitrokostas & Emmanuel Petrakis, 2012. "Managerial compensation contracts in quantity-setting duopoly," Working Papers 2012/17, Economics Department, Universitat Jaume I, Castellón (Spain).
    17. Murielle Djiguemde, 2020. "A survey on dynamic common pool resources : theory and experiment," Working Papers hal-03022377, HAL.
    18. John Hey & Tibor Neugebauer & Abdolkarim Sadrieh, 2009. "An Experimental Analysis of Optimal Renewable Resource Management: The Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(2), pages 263-285, October.
    19. Gönenç Yücel & Catherine Miluska Chiong Meza, 2008. "Studying transition dynamics via focusing on underlying feedback interactions," Computational and Mathematical Organization Theory, Springer, vol. 14(4), pages 320-349, December.
    20. Jan Kwakkel & Willem Auping, 2021. "Reaction: A commentary on Lustick and Tetlock (2021)," Futures & Foresight Science, John Wiley & Sons, vol. 3(2), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:39:y:2023:i:2:p:171-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.