IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i3p485-490.html
   My bibliography  Save this article

Connections between two classes of estimators for single‐index models

Author

Listed:
  • Weichao Yang
  • Xu Guo
  • Niwen Zhou
  • Changliang Zou

Abstract

Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, Shen et al. proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures.

Suggested Citation

  • Weichao Yang & Xu Guo & Niwen Zhou & Changliang Zou, 2024. "Connections between two classes of estimators for single‐index models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(3), pages 485-490, August.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:3:p:485-490
    DOI: 10.1111/stan.12329
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12329
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guohao Shen & Kani Chen & Jian Huang & Yuanyuan Lin, 2023. "Linearized maximum rank correlation estimation," Biometrika, Biometrika Trust, vol. 110(1), pages 187-203.
    2. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    3. Zhu, Li-Ping & Zhu, Li-Xing, 2009. "Nonconcave penalized inverse regression in single-index models with high dimensional predictors," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 862-875, May.
    4. Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    2. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    3. Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    4. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    5. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    6. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    7. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    8. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    9. Alfio Marazzi, 2021. "Improving the Efficiency of Robust Estimators for the Generalized Linear Model," Stats, MDPI, vol. 4(1), pages 1-20, February.
    10. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    11. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    12. Amos Golan & Enrico Moretti & Jeffrey M.Perloff, 2004. "A Small-Sample Estimator for the Sample-Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 71-91.
    13. Ron Mittelhammer & George Judge, 2009. "A Minimum Power Divergence Class of CDFs and Estimators for the Binary Choice Model," International Econometric Review (IER), Econometric Research Association, vol. 1(1), pages 33-49, April.
    14. Yiwei Fan & Jiaqi Gu & Guosheng Yin, 2023. "Sparse concordance‐based ordinal classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 934-961, September.
    15. Margaret Sullivan Pepe & Tianxi Cai & Gary Longton, 2006. "Combining Predictors for Classification Using the Area under the Receiver Operating Characteristic Curve," Biometrics, The International Biometric Society, vol. 62(1), pages 221-229, March.
    16. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2024. "Demand and Welfare Analysis in Discrete Choice Models with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 748-784.
    17. Jun Wang & Yahe Yu, 2024. "Improved estimation of average treatment effects under covariate‐adaptive randomization methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 310-333, May.
    18. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    19. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    20. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    21. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    22. Bellemare, C. & Melenberg, B. & van Soest, A.H.O., 2002. "Semi-parametric Models for Satisfaction with Income," Discussion Paper 2002-87, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:3:p:485-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.