IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v78y2014icp186-205.html
   My bibliography  Save this article

Transformation-based estimation

Author

Listed:
  • Feng, Zhenghui
  • Wang, Tao
  • Zhu, Lixing

Abstract

To alleviate the computational burden of making the relevant estimation algorithms stable for nonlinear and semiparametric regression models with, particularly, high-dimensional data, a transformation-based method combining sufficient dimension reduction approach is proposed. To this end, model-independent transformations are introduced to models under study. This generic methodology can be applied to transformation models; generalized linear models; and their corresponding quantile regression variants. The constructed estimates almost have closed forms in certain sense such that the above goals can be achieved. Simulation results show that, in finite sample cases with high-dimensional predictors and long-tailed distributions of error, the new estimates often exhibit a smaller degree of variance, and have much less computational burden than the classical methods such as the classical least squares and quantile regression estimation.

Suggested Citation

  • Feng, Zhenghui & Wang, Tao & Zhu, Lixing, 2014. "Transformation-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 186-205.
  • Handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:186-205
    DOI: 10.1016/j.csda.2014.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731400139X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanyuan Ma & Liping Zhu, 2013. "Efficiency loss and the linearity condition in dimension reduction," Biometrika, Biometrika Trust, vol. 100(2), pages 371-383.
    2. Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
    3. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    5. Yuexiao Dong & Bing Li, 2010. "Dimension reduction for non-elliptically distributed predictors: second-order methods," Biometrika, Biometrika Trust, vol. 97(2), pages 279-294.
    6. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    7. Liping Zhu & Tao Wang & Lixing Zhu & Louis Ferré, 2010. "Sufficient dimension reduction through discretization-expectation estimation," Biometrika, Biometrika Trust, vol. 97(2), pages 295-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xuehu & Wang, Tao & Zhao, Junlong & Zhu, Lixing, 2017. "Inference for biased transformation models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 105-120.
    2. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    3. Chen, Fei & Shi, Lei & Zhu, Xuehu & Zhu, Lixing, 2018. "Generalized principal Hessian directions for mixture multivariate skew elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 142-159.
    4. Jun Zhang & Junpeng Zhu & Zhenghui Feng, 2019. "Estimation and hypothesis test for single-index multiplicative models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 242-268, March.
    5. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    6. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    2. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    4. Xinchao Luo & Lixing Zhu & Hongtu Zhu, 2016. "Single‐index varying coefficient model for functional responses," Biometrics, The International Biometric Society, vol. 72(4), pages 1275-1284, December.
    5. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    6. Fan, Guo-Liang & Xu, Hong-Xia & Liang, Han-Ying, 2019. "Dimension reduction estimation for central mean subspace with missing multivariate response," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    7. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    8. Lei Wang, 2019. "Dimension reduction for kernel-assisted M-estimators with missing response at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 889-910, August.
    9. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    10. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    12. Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
    13. Xie, Chuanlong & Zhu, Lixing, 2020. "Generalized kernel-based inverse regression methods for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    14. Zhou, Jingke & Zhu, Lixing, 2016. "Principal minimax support vector machine for sufficient dimension reduction with contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 33-48.
    15. Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    16. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    17. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    18. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    19. Cheng, Qing & Zhu, Liping, 2017. "On relative efficiency of principal Hessian directions," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 108-113.
    20. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:186-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.