IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i3p458-476.html
   My bibliography  Save this article

A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times

Author

Listed:
  • JEAN‐MARC BARDET
  • PIERRE R. BERTRAND

Abstract

. In numerous applications data are observed at random times and an estimated graph of the spectral density may be relevant for characterizing and explaining phenomena. By using a wavelet analysis, one derives a non‐parametric estimator of the spectral density of a Gaussian process with stationary increments (or a stationary Gaussian process) from the observation of one path at random discrete times. For every positive frequency, this estimator is proved to satisfy a central limit theorem with a convergence rate depending on the roughness of the process and the moment of random durations between successive observations. In the case of stationary Gaussian processes, one can compare this estimator with estimators based on the empirical periodogram. Both estimators reach the same optimal rate of convergence, but the estimator based on wavelet analysis converges for a different class of random times. Simulation examples and an application to biological data are also provided.

Suggested Citation

  • Jean‐Marc Bardet & Pierre R. Bertrand, 2010. "A Non‐Parametric Estimator of the Spectral Density of a Continuous‐Time Gaussian Process Observed at Random Times," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 458-476, September.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:3:p:458-476
    DOI: 10.1111/j.1467-9469.2009.00684.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00684.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00684.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Bardet & G. Lang & E. Moulines & P. Soulier, 2000. "Wavelet Estimator of Long-Range Dependent Processes," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 85-99, January.
    2. Lii, Keh-Shin & Masry, Elias, 1994. "Spectral estimation of continuous-time stationary processes from random sampling," Stochastic Processes and their Applications, Elsevier, vol. 52(1), pages 39-64, August.
    3. Jean‐Marc Bardet & Pierre Bertrand, 2007. "Identification of the multiscale fractional Brownian motion with biomechanical applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 1-52, January.
    4. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihong Wang & Jinde Wang, 2014. "Wavelet estimation of the memory parameter for long range dependent random fields," Statistical Papers, Springer, vol. 55(4), pages 1145-1158, November.
    2. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    3. Richard Hunt & Shelton Peiris & Neville Weber, 2022. "Estimation methods for stationary Gegenbauer processes," Statistical Papers, Springer, vol. 63(6), pages 1707-1741, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    2. Jean-Marc Bardet & Imen Kammoun & Veronique Billat, 2012. "A new process for modeling heartbeat signals during exhaustive run with an adaptive estimator of its fractal parameters," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1331-1351, December.
    3. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    4. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    5. F. Roueff & M. S. Taqqu, 2009. "Asymptotic normality of wavelet estimators of the memory parameter for linear processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 534-558, September.
    6. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    7. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Documents de travail du Centre d'Economie de la Sorbonne 15085, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
    9. Lihong Wang & Jinde Wang, 2014. "Wavelet estimation of the memory parameter for long range dependent random fields," Statistical Papers, Springer, vol. 55(4), pages 1145-1158, November.
    10. Xiao, Yimin, 2009. "A packing dimension theorem for Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 88-97, January.
    11. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    12. Anne Philippe & Caroline Robet & Marie-Claude Viano, 2021. "Random discretization of stationary continuous time processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 375-400, April.
    13. Matthieu Garcin & Dominique Guegan, 2015. "Optimal wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Post-Print halshs-01244239, HAL.
    14. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    15. C. Lévy‐Leduc & E. Moulines & F. Roueff, 2008. "Frequency estimation based on the cumulated Lomb–Scargle periodogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1104-1131, November.
    16. Bardet, Jean-Marc & Dola, Béchir, 2012. "An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 222-240.
    17. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Keh‐Shin Lii & Elias Masry, 1995. "On The Selection Of Random Sampling Schemes For The Spectral Estimation Of Continuous Time Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 291-311, May.
    19. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    20. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:3:p:458-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.