IDEAS home Printed from https://ideas.repec.org/a/bla/rgscpp/v15y2023i3p474-492.html
   My bibliography  Save this article

Spatial contagion during the first wave of the COVID‐19 pandemic: Some lessons from the case of Madrid, Spain

Author

Listed:
  • María Hierro
  • Adolfo Maza

Abstract

This paper analyses the magnitude of the spatial transmission of COVID‐19 through the municipalities of the region of Madrid during the first pandemic wave using a spatial contagion index. The study also provides additional insights into the main factors contributing to the spread of the virus in both time and space by estimating a novel conditional spatial contagion index. Our results reveal high values of spatial contagion before and during the national lockdown enacted on 15 March 2020, becoming medium/low since then. Furthermore, the study confirms the leading role of inter‐municipal mobility and population density in spatial contagion. Este artículo analiza la magnitud de la transmisión espacial de COVID‐19 a través de los municipios de la región de Madrid durante la primera ola pandémica, para lo cual utiliza un índice de contagio espacial. El estudio también proporciona información adicional sobre los principales factores que contribuyen a la propagación del virus, tanto en el tiempo como en el espacio, mediante la estimación de un novedoso índice de contagio espacial condicional. Los resultados revelan altos valores de contagio espacial antes y durante el confinamiento nacional promulgado el 15 de marzo de 2020, pasando a ser medios o bajos desde entonces. Además, el estudio confirma el protagonismo de la movilidad intermunicipal y la densidad de población en el contagio espacial. 本稿では、空間的感染指標を用いて、パンデミックの第一波におけるマドリッド地域の自治体におけるCOVID‐19の空間的伝播の規模を解析する。また、新しい条件付き空間感染指標を推定することにより、時間と空間の両方でウイルスの拡散に寄与する主要因子の解明の手掛かりを提供する。結果から、2020年3月15日に施行された全国的なロックダウン前とロックダウン中の空間的感染のレベルが高く、それ以降は中程度~低程度になっていることが明らかになった。本研究からさらに、都市間の移動性と人口密度が空間的感染の主導的役割となっていることを確認された。

Suggested Citation

  • María Hierro & Adolfo Maza, 2023. "Spatial contagion during the first wave of the COVID‐19 pandemic: Some lessons from the case of Madrid, Spain," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 474-492, April.
  • Handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:474-492
    DOI: 10.1111/rsp3.12522
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rsp3.12522
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rsp3.12522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. María Hierro & Adolfo Maza & José Villaverde, 2013. "A proposal for detecting spatial contagion: Some evidence on the international migration distribution in Spain," Papers in Regional Science, Wiley Blackwell, vol. 92(4), pages 811-829, November.
    2. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    3. Sandy Dall'Erba & Marco Percoco & Gianfranco Piras, 2008. "The European Regional Growth Process Revisited," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(1), pages 7-25.
    4. Pedro S Peixoto & Diego Marcondes & Cláudia Peixoto & Sérgio M Oliva, 2020. "Modeling future spread of infections via mobile geolocation data and population dynamics. An application to COVID-19 in Brazil," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Panagiotis Artelaris, 2021. "Regional economic growth and inequality in Greece," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 141-158, February.
    3. Josef Novotný, 2010. "Regionální ekonomická konvergence, divergence a další aspekty distribuční dynamiky evropských regionů v období 1992-2006 [Regional Convergence, Divergence and Other Aspects of Distributional Dynami," Politická ekonomie, Prague University of Economics and Business, vol. 2010(2), pages 166-185.
    4. M. R. Martines & R. V. Ferreira & R. H. Toppa & L. M. Assunção & M. R. Desjardins & E. M. Delmelle, 2021. "Detecting space–time clusters of COVID-19 in Brazil: mortality, inequality, socioeconomic vulnerability, and the relative risk of the disease in Brazilian municipalities," Journal of Geographical Systems, Springer, vol. 23(1), pages 7-36, January.
    5. Fernando López & Jesús Mur & Ana Angulo, 2014. "Spatial model selection strategies in a SUR framework. The case of regional productivity in EU," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 197-220, August.
    6. Up Lim & Donghyun Kim, 2015. "Toward Sustainable Economic Growth: A Spatial Panel Data Analysis of Regional Income Convergence in US BEA Economic Areas," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    7. Terry Gregory & Roberto Patuelli, 2015. "Demographic ageing and the polarization of regions—an exploratory space–time analysis," Environment and Planning A, , vol. 47(5), pages 1192-1210, May.
    8. Timo Mitze & Reinhold Kosfeld, 2022. "The propagation effect of commuting to work in the spatial transmission of COVID-19," Journal of Geographical Systems, Springer, vol. 24(1), pages 5-31, January.
    9. Ilya Kashnitsky & Joop De Beer & Leo Van Wissen, 2020. "Economic Convergence In Ageing Europe," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 111(1), pages 28-44, February.
    10. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    11. Theodoros Arvanitopoulos & Vassilis Monastiriotis & Theodore Panagiotidis, 2021. "Drivers of convergence: The role of first- and second-nature geography," Urban Studies, Urban Studies Journal Limited, vol. 58(14), pages 2880-2900, November.
    12. Vassilis Monastiriotis, 2014. "Regional Growth and National Development: Transition in Central and Eastern Europe and the Regional Kuznets Curve in the East and the West," Spatial Economic Analysis, Taylor & Francis Journals, vol. 9(2), pages 142-161, June.
    13. Izabela Sobiech Pellegrini, 2022. "Untimely Reopening? Increase in the Number of New COVID‐19 Cases After Reopening in One Brazilian State," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 675-693, August.
    14. Tausch, Arno, 2008. "308 Billion Euros into the Sand? The Debacle of the EU's Regional Policy [308 Milliarden Euro in den Sand? Zum Debakel der EU-Regionalpolitik]," MPRA Paper 10609, University Library of Munich, Germany.
    15. Dong Guo & Sandy Dall’erba & Julie Le Gallo, 2013. "The Leading Role of Manufacturing in China’s Regional Economic Growth," International Regional Science Review, , vol. 36(2), pages 139-166, April.
    16. Panagiotis Artelaris & George Petrakos, 2016. "Intraregional Spatial Inequalities and Regional Income Level in the European Union," International Regional Science Review, , vol. 39(3), pages 291-317, July.
    17. Haghighat, Fatemeh, 2021. "Predicting the trend of indicators related to Covid-19 using the combined MLP-MC model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    18. Luca Salvati & Marco Zitti & Margherita Carlucci, 2014. "Territorial Systems, Regional Disparities and Sustainability: Economic Structure and Soil Degradation in Italy," Sustainability, MDPI, vol. 6(5), pages 1-19, May.
    19. Pede, Valerien O. & Florax, Raymond J.G.M. & Holt, Matthew T., 2009. "A Spatial Econometric Star Model With An Application To U.S. County Economic Growth, 1969–2003," Working papers 48117, Purdue University, Department of Agricultural Economics.
    20. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rgscpp:v:15:y:2023:i:3:p:474-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1757-7802 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.