IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v18y2008i3p427-443.html
   My bibliography  Save this article

Bivariate Support Of Forward Libor And Swap Rates

Author

Listed:
  • Farshid Jamshidian

Abstract

Based on a certain notion of “prolific process,” we find an explicit expression for the bivariate (topological) support of the solution to a particular class of 2 × 2 stochastic differential equations that includes those of the three‐period “lognormal” Libor and swap market models. This yields that in the lognormal swap market model (SMM), the support of the 1 × 1 forward Libor L*t equals [l*t, ∞) for some semi‐explicit −1 ≤l*t≤ 0, sharpening a result of Davis and Mataix‐Pastor (2007) that forward Libor rates (eventually) become negative with positive probability in the lognormal SMM. We classify the instances l*t

Suggested Citation

  • Farshid Jamshidian, 2008. "Bivariate Support Of Forward Libor And Swap Rates," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 427-443, July.
  • Handle: RePEc:bla:mathfi:v:18:y:2008:i:3:p:427-443
    DOI: 10.1111/j.1467-9965.2008.00340.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2008.00340.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2008.00340.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Mark Davis & Vicente Mataix-Pastor, 2007. "Negative Libor rates in the swap market model," Finance and Stochastics, Springer, vol. 11(2), pages 181-193, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark H. A. Davis & Vicente Mataix-Pastor, 2009. "Arbitrage-Free Interpolation Of The Swap Curve," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 969-1005.
    2. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    5. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    6. Reik Borger & Jan van Heys, 2010. "Calibration of the Libor Market Model Using Correlations Implied by CMS Spread Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(5), pages 453-469.
    7. Carol Alexander & Dimitri Lvov, 2003. "Statistical Properties of Forward Libor Rates," ICMA Centre Discussion Papers in Finance icma-dp2003-03, Henley Business School, University of Reading.
    8. Roberto Baviera, 2019. "Back-Of-The-Envelope Swaptions In A Very Parsimonious Multi-Curve Interest Rate Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-24, August.
    9. Tiziana Di Matteo & Tomaso Aste, 2002. "How Does The Eurodollar Interest Rate Behave?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 107-122.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Muhammad Omer & Jakob de Haan & Bert Scholtens, 2014. "Testing uncovered interest rate parity using LIBOR," Applied Economics, Taylor & Francis Journals, vol. 46(30), pages 3708-3723, October.
    12. repec:uts:finphd:40 is not listed on IDEAS
    13. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    16. Jacques Van Appel & Thomas A. Mcwalter, 2018. "Erratum: Efficient Long-Dated Swaption Volatility Approximation In The Forward-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-2, November.
    17. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    18. Hinnerich, Mia, 2008. "Inflation-indexed swaps and swaptions," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2293-2306, November.
    19. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    20. Keiichi Tanaka & Takeshi Yamada & Toshiaki Watanabe, 2010. "Applications of Gram-Charlier expansion and bond moments for pricing of interest rates and credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 645-662.
    21. Ladekarl, Jeppe & Ladekarl, Regitze & Andersen, Erik Brink & Vittas, Dimitri, 2007. "The use of derivatives to hedge embedded options : the case of pension institutions in Denmark," Policy Research Working Paper Series 4159, The World Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:18:y:2008:i:3:p:427-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.