IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v30y2009i3p286-314.html
   My bibliography  Save this article

Local Linear M-estimation in non-parametric spatial regression

Author

Listed:
  • Zhengyan Lin
  • Degui Li
  • Jiti Gao

Abstract

A robust version of local linear regression smoothers augmented with variable bandwidths is investigated for dependent spatial processes. The (uniform) weak consistency as well as asymptotic normality for the local linear M-estimator (LLME) of the spatial regression function g( x ) are established under some mild conditions. Furthermore, an additive model is considered to avoid the curse of dimensionality for spatial processes and an estimation procedure based on combining the marginal integration technique with LLME is applied in this paper. Meanwhile, we present a simulated study to illustrate the proposed estimation method. Our simulation results show that the estimation method works well numerically. Copyright 2009 The Authors. Journal compilation 2009 Blackwell Publishing Ltd

Suggested Citation

  • Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M-estimation in non-parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
  • Handle: RePEc:bla:jtsera:v:30:y:2009:i:3:p:286-314
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9892.2009.00612.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Y. K. & Choi, H. & Park, B. U. & Yu, K. S., 2004. "Local likelihood density estimation on random fields," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 347-357, July.
    2. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    3. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    4. Roussas, George G., 1990. "Nonparametric regression estimation under mixing conditions," Stochastic Processes and their Applications, Elsevier, vol. 36(1), pages 107-116, October.
    5. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    6. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    7. Cai, Zongwu & Ould-Saïd, Elias, 2003. "Local M-estimator for nonparametric time series," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 433-449, December.
    8. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
    9. Athreya, Krishna B. & Pantula, Sastry G., 1986. "A note on strong mixing of ARMA processes," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 187-190, June.
    10. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    11. Cunningham, J. K. & Eubank, R. L. & Hsing, T., 1991. "M-type smoothing splines with auxiliary scale estimation," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 43-51, January.
    12. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    2. Chen, Jia & Li, Degui & Zhang, Lixin, 2010. "Robust estimation in a nonlinear cointegration model," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 706-717, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:30:y:2009:i:3:p:286-314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.