IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-2127.html
   My bibliography  Save this paper

Kernel density estimation for spatial processes: the L1 theory

Author

Listed:
  • Marc Hallin
  • Zudi Lu
  • Lanh T. Tran

Abstract

The purpose of this paper is to investigate kernel density estimators for spatial processes with linear or nonlinear structures. Sufficient conditions for such estimators to converge in L1 are obtained under extremely general, verifiable conditions. The results hold for mixing as well as for nonmixing processes. Potential applications include testing for spatial interaction, the spatial analysis of causality structures, the definition of leading/lagging sites, the construction of clusters of comoving sites, etc.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Kernel density estimation for spatial processes: the L1 theory," ULB Institutional Repository 2013/2127, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/2127
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tran, Lanh Tat, 1992. "Kernel density estimation for linear processes," Stochastic Processes and their Applications, Elsevier, vol. 41(2), pages 281-296, June.
    2. Masry, Elias & Györfi, László, 1987. "Strong consistency and rates for recursive probability density estimators of stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 79-93, June.
    3. Tran, L. T. & Yakowitz, S., 1993. "Nearest Neighbor Estimators for Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 23-46, January.
    4. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    5. Ioannides, D. & Roussas, G. G., 1987. "Note on the uniform convergence of density estimates for mixing random variables," Statistics & Probability Letters, Elsevier, vol. 5(4), pages 279-285, June.
    6. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    7. Kulkarni, P. M., 1992. "Estimation of parameters of a two-dimensional spatial autoregressive model with regression," Statistics & Probability Letters, Elsevier, vol. 15(2), pages 157-162, September.
    8. Marc Hallin & Michel Carbon & Lanh T. Tran, 1996. "Kernel density estimation on random fields: the L1 theory," ULB Institutional Repository 2013/2065, ULB -- Universite Libre de Bruxelles.
    9. Boente, Graciela & Fraiman, Ricardo, 1988. "Consistency of a nonparametric estimate of a density function for dependent variables," Journal of Multivariate Analysis, Elsevier, vol. 25(1), pages 90-99, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    2. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    3. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    4. Gao, Jiti & Lu, Zudi & Tjøstheim, Dag, 2008. "Moment inequalities for spatial processes," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 687-697, April.
    5. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M-estimation in non-parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    6. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11971, University Library of Munich, Germany.
    7. Peter M Robinson, 2009. "Developments in the Analysis of Spatial Data," STICERD - Econometrics Paper Series 531, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    9. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    10. repec:eee:ecosta:v:5:y:2018:i:c:p:148-170 is not listed on IDEAS
    11. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    12. Lu, Zudi & Lundervold, Arvid & Tjøstheim, Dag & Yao, Qiwei, 2007. "Exploring spatial nonlinearity using additive approximation," LSE Research Online Documents on Economics 5401, London School of Economics and Political Science, LSE Library.
    13. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    14. Jenish, Nazgul & Prucha, Ingmar R., 2012. "On spatial processes and asymptotic inference under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 170(1), pages 178-190.
    15. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    16. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying-coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880.
    17. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.

    More about this item

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/2127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/ecsulbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.