IDEAS home Printed from
   My bibliography  Save this article

Realtime sequential inference of static parameters with expensive likelihood calculations


  • P. Robins
  • V. E. Rapley
  • N. Green


A methodology is developed for making inference about parameters of a possible covert chemical or biological atmospheric release from sensor readings. The key difficulty in performing this inference is that the results must be obtained in a very short timescale (5 min) to make use of the inference for protection. The methodology that is developed uses some of the components in a sequential Monte Carlo algorithm. However, this inference problem is different from many other sequential Monte Carlo problems, in that there are no state evolution equations, the forward model is highly non-linear and the likelihoods are non-Gaussian. The algorithm that is developed can use stored output from complex physics models for more rapid update of the posterior from new data without having to rerun the models. The use of differential evolution Markov chain sampling allows new samples to diverge rapidly from degenerate sample sets. Results for inferences made of atmospheric releases (both real and simulated) of material are presented, demonstrating that the sampling scheme performs adequately despite constraints of a short time span for calculations. Copyright (c) British Crown copyright 2009 Dstl-published with the permission of the Controller of Her Majesty's Stationery Office.

Suggested Citation

  • P. Robins & V. E. Rapley & N. Green, 2009. "Realtime sequential inference of static parameters with expensive likelihood calculations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 641-662.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:5:p:641-662

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    2. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:5:p:641-662. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.