IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Spatial prediction of weed intensities from exact count data and image-based estimates

Listed author(s):
  • Gilles Guillot
  • Niklas Lorén
  • Mats Rudemo
Registered author(s):

    Collecting weed exact counts in an agricultural field is easy but extremely time consuming. Image analysis algorithms for object extraction applied to pictures of agricultural fields may be used to estimate the weed content with a high resolution (about 1 m-super-2), and pictures that are acquired at a large number of sites can be used to obtain maps of weed content over a whole field at a reasonably low cost. However, these image-based estimates are not perfect and acquiring exact weed counts also is highly useful both for assessing the accuracy of the image-based algorithms and for improving the estimates by use of the combined data. We propose and compare various models for image index and exact weed count and we use them to assess how such data should be combined to obtain reliable maps. The method is applied to a real data set from a 30-ha field. We show that using image estimates in addition to exact counts allows us to improve the accuracy of maps significantly. We also show that the relative performances of the methods depend on the size of the data set and on the specific methodology (full Bayes "versus" plug-in) that is implemented. Copyright (c) 2009 Royal Statistical Society.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series C (Applied Statistics).

    Volume (Year): 58 (2009)
    Issue (Month): 4 ()
    Pages: 525-542

    in new window

    Handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:525-542
    Contact details of provider: Postal:
    12 Errol Street, London EC1Y 8LX, United Kingdom

    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Web page:

    More information through EDIRC

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:4:p:525-542. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.