IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i3p794-821.html
   My bibliography  Save this article

Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators

Author

Listed:
  • Xiang Zhou

Abstract

Causal mediation analysis concerns the pathways through which a treatment affects an outcome. While most of the mediation literature focuses on settings with a single mediator, a flourishing line of research has examined settings involving multiple mediators, under which path‐specific effects (PSEs) are often of interest. We consider estimation of PSEs when the treatment effect operates through K(≥ 1) causally ordered, possibly multivariate mediators. In this setting, the PSEs for many causal paths are not nonparametrically identified, and we focus on a set of PSEs that are identified under Pearl's nonparametric structural equation model. These PSEs are defined as contrasts between the expectations of 2K+1 potential outcomes and identified via what we call the generalized mediation functional (GMF). We introduce an array of regression‐imputation, weighting and ‘hybrid’ estimators, and, in particular, two K + 2‐robust and locally semiparametric efficient estimators for the GMF. The latter estimators are well suited to the use of data‐adaptive methods for estimating their nuisance functions. We establish the rate conditions required of the nuisance functions for semiparametric efficiency. We also discuss how our framework applies to several estimands that may be of particular interest in empirical applications. The proposed estimators are illustrated with a simulation study and an empirical example.

Suggested Citation

  • Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:794-821
    DOI: 10.1111/rssb.12487
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12487
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Milligan, Kevin & Moretti, Enrico & Oreopoulos, Philip, 2004. "Does education improve citizenship? Evidence from the United States and the United Kingdom," Journal of Public Economics, Elsevier, vol. 88(9-10), pages 1667-1695, August.
    3. R. M. Daniel & B. L. De Stavola & S. N. Cousens & S. Vansteelandt, 2015. "Causal mediation analysis with multiple mediators," Biometrics, The International Biometric Society, vol. 71(1), pages 1-14, March.
    4. Peisong Han & Lu Wang, 2013. "Estimation with missing data: beyond double robustness," Biometrika, Biometrika Trust, vol. 100(2), pages 417-430.
    5. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    6. Dee, Thomas S., 2004. "Are there civic returns to education?," Journal of Public Economics, Elsevier, vol. 88(9-10), pages 1697-1720, August.
    7. Gruber, Susan & Laan, Mark van der, 2012. "tmle: An R Package for Targeted Maximum Likelihood Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i13).
    8. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    9. Zheng Wenjing & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation of Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-40, January.
    10. Jeffrey M. Albert & Suchitra Nelson, 2011. "Generalized Causal Mediation Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 1028-1038, September.
    11. J. Molina & A. Rotnitzky & M. Sued & J. M. Robins, 2017. "Multiple robustness in factorized likelihood models," Biometrika, Biometrika Trust, vol. 104(3), pages 561-581.
    12. Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
    13. Caleb H. Miles & Ilya Shpitser & Phyllis Kanki & Seema Meloni & Eric J. Tchetgen Tchetgen, 2017. "Quantifying an Adherence Path-Specific Effect of Antiretroviral Therapy in the Nigeria PEPFAR Program," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1443-1452, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caitlin E. Ahearn & Jennie E. Brand & Xiang Zhou, 2023. "How, and For Whom, Does Higher Education Increase Voting?," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(4), pages 574-597, June.
    2. Yu-Chin Hsu & Martin Huber & Yu-Min Yen, 2023. "Doubly Robust Estimation of Direct and Indirect Quantile Treatment Effects with Machine Learning," Papers 2307.01049, arXiv.org.
    3. Sourabh Balgi & Adel Daoud & Jose M. Pe~na & Geoffrey T. Wodtke & Jesse Zhou, 2024. "Deep Learning With DAGs," Papers 2401.06864, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    2. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    3. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    4. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    5. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    6. Y Cui & E J Tchetgen Tchetgen, 2024. "Selective machine learning of doubly robust functionals," Biometrika, Biometrika Trust, vol. 111(2), pages 517-535.
    7. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    8. Martin Huber & Michael Lechner & Giovanni Mellace, 2016. "The Finite Sample Performance of Estimators for Mediation Analysis Under Sequential Conditional Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 139-160, January.
    9. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    10. Xiaogang Duan & Guosheng Yin, 2017. "Ensemble Approaches to Estimating the Population Mean with Missing Response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 899-917, December.
    11. Guanglei Hong & Fan Yang & Xu Qin, 2023. "Posttreatment confounding in causal mediation studies: A cutting‐edge problem and a novel solution via sensitivity analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 1042-1056, June.
    12. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    13. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    14. Chixiang Chen & Biyi Shen & Aiyi Liu & Rongling Wu & Ming Wang, 2021. "A multiple robust propensity score method for longitudinal analysis with intermittent missing data," Biometrics, The International Biometric Society, vol. 77(2), pages 519-532, June.
    15. Zhuoer Sun & Suojin Wang, 2019. "Semiparametric estimation in regression with missing covariates using single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1201-1232, October.
    16. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    17. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    18. Peisong Han & Linglong Kong & Jiwei Zhao & Xingcai Zhou, 2019. "A general framework for quantile estimation with incomplete data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 305-333, April.
    19. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    20. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:794-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.