IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v171y2008i1p65-88.html
   My bibliography  Save this article

Exploring social mobility with latent trajectory groups

Author

Listed:
  • Patrick Sturgis
  • Louise Sullivan

Abstract

Summary. We present a new methodological approach to the study of social mobility. We use a latent class growth analysis framework to identify five qualitatively distinct social class trajectory groups between 1980 and 2000 for male respondents to the 1970 British Cohort Study. We model the antecedents of trajectory group membership via multinomial logistic regression. Non‐response, which is a considerable problem in long‐term panels and cohort studies, is handled via direct maximum likelihood estimation, which is consistent and efficient when data are missing at random. Our results suggest a combination of meritocratic and ascriptive influences on the probability of membership in the different trajectory groups.

Suggested Citation

  • Patrick Sturgis & Louise Sullivan, 2008. "Exploring social mobility with latent trajectory groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 65-88, January.
  • Handle: RePEc:bla:jorssa:v:171:y:2008:i:1:p:65-88
    DOI: 10.1111/j.1467-985X.2007.00516.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00516.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00516.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bobby L. Jones & Daniel S. Nagin & Kathryn Roeder, 2001. "A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories," Sociological Methods & Research, , vol. 29(3), pages 374-393, February.
    2. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Byrne & Natalie Shlomo & Tarani Chandola, 2023. "Multilevel modelling approach to analysing life course socioeconomic status and understanding missingness," Review of Evolutionary Political Economy, Springer, vol. 4(2), pages 275-297, July.
    2. Doruk, Ömer Tuğsal & Pastore, Francesco & Yavuz, Hasan Bilgehan, 2024. "Intergenerational occupational mobility in Latin American economies: An empirical approach," Economic Systems, Elsevier, vol. 48(1).
    3. Paul Atkinson & Catherine Porter & Ian Gregory & Brian Francis, 2017. "Spatial modelling of rural infant mortality and occupation in 19th-century Britain," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(44), pages 1337-1360.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    2. Sridharan, Sanjeev & Jones, Bobby & Caudill, Barry & Nakaima, April, 2016. "Steps towards incorporating heterogeneities into program theory: A case study of a data-driven approach," Evaluation and Program Planning, Elsevier, vol. 58(C), pages 88-97.
    3. Fokoué, Ernest, 2005. "Mixtures of factor analyzers: an extension with covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 370-384, August.
    4. Michael Prendergast & David Huang & Yih-Ing Hser, 2008. "Patterns of Crime and Drug Use Trajectories in Relation to Treatment Initiation and 5-Year Outcomes," Evaluation Review, , vol. 32(1), pages 59-82, February.
    5. Xiaosun Lu & Yangxin Huang & Rong Zhou, 2016. "Joint analysis of nonlinear heterogeneous longitudinal data and binary outcome: an application to AIDS clinical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2713-2728, November.
    6. Brian Francis & Jiayi Liu, 2015. "Modelling escalation in crime seriousness: a latent variable approach," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 277-297, August.
    7. Silvia Bacci & Francesco Bartolucci & Giulia Bettin & Claudia Pigini, 2017. "A mixture growth model for migrants' remittances: An application to the German Socio-Economic Panel," Mo.Fi.R. Working Papers 145, Money and Finance Research group (Mo.Fi.R.) - Univ. Politecnica Marche - Dept. Economic and Social Sciences.
    8. Jin, Huaiping & Shi, Lixian & Chen, Xiangguang & Qian, Bin & Yang, Biao & Jin, Huaikang, 2021. "Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models," Renewable Energy, Elsevier, vol. 174(C), pages 1-18.
    9. Landry, Craig & Remar, Daniel & Twinkle, Roy, 2022. "Economic Value of Restaurant Safety Measures and Propensity to Dine during the COVID-19 Pandemic," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322234, Agricultural and Applied Economics Association.
    10. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    11. Bacci, Silvia & Bartolucci, Francesco & Pigini, Claudia & Signorelli, Marcello, 2014. "A finite mixture latent trajectory model for hirings and separations in the labor market," MPRA Paper 59730, University Library of Munich, Germany.
    12. Proust-Lima, Cécile & Joly, Pierre & Dartigues, Jean-François & Jacqmin-Gadda, Hélène, 2009. "Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1142-1154, February.
    13. Pennoni, Fulvia & Romeo, Isabella, 2016. "Latent Markov and growth mixture models for ordinal individual responses with covariates: a comparison," MPRA Paper 72939, University Library of Munich, Germany.
    14. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    15. Arévalo, Sandra P. & Tucker, Katherine L. & Falcón, Luis M., 2014. "Life events trajectories, allostatic load, and the moderating role of age at arrival from Puerto Rico to the US mainland," Social Science & Medicine, Elsevier, vol. 120(C), pages 301-310.
    16. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    17. Debra A. Murphy & Mary-Lynn Brecht & Diane Herbeck & Elizabeth Evans & David Huang & Yih-Ing Hser, 2008. "Longitudinal HIV Risk Behavior Among the Drug Abuse Treatment Outcome Studies (DATOS) Adult Sample," Evaluation Review, , vol. 32(1), pages 83-112, February.
    18. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.
    19. Benjamin Agbo & Hussain Al-Aqrabi & Richard Hill & Tariq Alsboui, 2022. "Missing Data Imputation in the Internet of Things Sensor Networks," Future Internet, MDPI, vol. 14(5), pages 1-16, May.
    20. Yao Zheng & H. Harrington Cleveland & Peter C. M. Molenaar & Kitty S. Harris, 2015. "An Alternative Framework to Investigating and Understanding Intraindividual Processes in Substance Abuse Recovery," Evaluation Review, , vol. 39(2), pages 229-254, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:171:y:2008:i:1:p:65-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.