IDEAS home Printed from https://ideas.repec.org/a/bla/jecrev/v58y2007i1p1-23.html
   My bibliography  Save this article

Volatility Models

Author

Listed:
  • KIMIO MORIMUNE

Abstract

Models for estimating the volatility of financial assets are reviewed in this paper. The volatility can be estimated by the univariate GARCH family of models, or stochastic volatility models. These univariate models are developed intomultivariate models. Finally, the search for an adequate framework for the estimation has led to the analysis of high frequency intraday data. The variance over a fixed interval can be estimated accurately as the sum of squared realizations, provided the data are available at sufficiently high sampling frequencies. The future of this new area is wide open for theoretical developments and for applied studies.

Suggested Citation

  • Kimio Morimune, 2007. "Volatility Models," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 1-23, March.
  • Handle: RePEc:bla:jecrev:v:58:y:2007:i:1:p:1-23
    DOI: 10.1111/j.1468-5876.2007.00411.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1468-5876.2007.00411.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1468-5876.2007.00411.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Subbotin, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    2. Ahmad Zubaidi Baharumshah & Akram Hasanov & Stilianos Fountas, 2011. "Inflation and inflation uncertainty: Evidence from two Transition Economies," Discussion Paper Series 2011_05, Department of Economics, University of Macedonia, revised Apr 2011.
    3. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    4. Hassan Heidari & Salih Turan Katircioglu & Sahar Bashiri, 2013. "Inflation, inflation uncertainty and growth in the Iranian economy: an application of BGARCH-M model with BEKK approach," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(5), pages 819-832, November.
    5. Hasanov, Akram Shavkatovich & Do, Hung Xuan & Shaiban, Mohammed Sharaf, 2016. "Fossil fuel price uncertainty and feedstock edible oil prices: Evidence from MGARCH-M and VIRF analysis," Energy Economics, Elsevier, vol. 57(C), pages 16-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    2. Lallouache, Mehdi & Abergel, Frédéric, 2014. "Tick size reduction and price clustering in a FX order book," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 488-498.
    3. Dufour, Jean-Marie & García, René & Taamouti, Abderrahim, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    5. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    6. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    7. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    10. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    11. Monira Essa Aloud, 2016. "Profitability of Directional Change Based Trading Strategies: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 87-95.
    12. Cotter, John & Dowd, Kevin, 2007. "The tail risks of FX return distributions: A comparison of the returns associated with limit orders and market orders," Finance Research Letters, Elsevier, vol. 4(3), pages 146-154, September.
    13. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    14. Stefanescu, Razvan & Dumitriu, Ramona, 2015. "Conţinutul analizei seriilor de timp financiare [The Essentials of the Analysis of Financial Time Series]," MPRA Paper 67175, University Library of Munich, Germany.
    15. Challet, Damien & Stinchcombe, Robin, 2003. "Limit order market analysis and modelling: on a universal cause for over-diffusive prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 141-145.
    16. Feng, Yuanhua, 2002. "Modelling Different Volatility Components," CoFE Discussion Papers 02/18, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Caporin, Massimiliano & Chang, Chia-Lin & McAleer, Michael, 2019. "Are the S&P 500 index and crude oil, natural gas and ethanol futures related for intra-day data?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 50-70.
    18. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    19. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    20. Masanori Hirano & Kiyoshi Izumi & Hiroyasu Matsushima & Hiroki Sakaji, 2020. "Comparing Actual and Simulated HFT Traders' Behavior for Agent Design," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(3), pages 1-6.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jecrev:v:58:y:2007:i:1:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/jeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.