IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v88y2020i2p519-519.html
   My bibliography  Save this article

Correction to ‘Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles’

Author

Listed:
  • Chaitra H. Nagaraja
  • Haikady N. Nagaraja

Abstract

No abstract is available for this item.

Suggested Citation

  • Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Correction to ‘Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles’," International Statistical Review, International Statistical Institute, vol. 88(2), pages 519-519, August.
  • Handle: RePEc:bla:istatr:v:88:y:2020:i:2:p:519-519
    DOI: 10.1111/insr.12394
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12394
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    2. Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    2. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
    3. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    4. Soekhai, V. & Donkers, B. & Levitan, B. & de Bekker-Grob, E.W., 2021. "Case 2 best-worst scaling: For good or for bad but not for both," Journal of choice modelling, Elsevier, vol. 41(C).
    5. R. N. Rattihalli, 2023. "A Class of Multivariate Power Skew Symmetric Distributions: Properties and Inference for the Power-Parameter," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1356-1393, August.
    6. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    7. Dorinth van Dijk & David Geltner & Alex van de Minne, 2018. "Revisiting supply and demand indexes in real estate," DNB Working Papers 583, Netherlands Central Bank, Research Department.
    8. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    9. Dorinth W. Dijk & David M. Geltner & Alex M. Minne, 2022. "The Dynamics of Liquidity in Commercial Property Markets: Revisiting Supply and Demand Indexes in Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 64(3), pages 327-360, April.
    10. Gurprit Grover & Vinay K. Gupta, 2015. "Multiple imputation of censored survival data in the presence of missing covariates using restricted mean survival time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 817-827, April.
    11. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    12. repec:osf:osfxxx:tjxab_v1 is not listed on IDEAS
    13. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    14. Sarah C. Lotspeich & Bryan E. Shepherd & Gustavo G. C. Amorim & Pamela A. Shaw & Ran Tao, 2022. "Efficient odds ratio estimation under two‐phase sampling using error‐prone data from a multi‐national HIV research cohort," Biometrics, The International Biometric Society, vol. 78(4), pages 1674-1685, December.
    15. repec:osf:thesis:jckt7_v1 is not listed on IDEAS
    16. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    17. Ian R. White, 2010. "simsum: Analyses of simulation studies including Monte Carlo error," Stata Journal, StataCorp LLC, vol. 10(3), pages 369-385, September.
    18. Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
    19. Zdeněk Zmeškal & Dana Dluhošová & Karolina Lisztwanová & Antonín Pončík & Iveta Ratmanová, 2023. "Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy," Forecasting, MDPI, vol. 5(2), pages 1-19, May.
    20. Riko Kelter & Alexander Schnurr, 2025. "The Bayesian Group-Sequential Predictive Evidence Value Design for Phase II Clinical Trials with Binary Endpoints," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 442-478, July.
    21. Lyndsey Rolheiser & Dorinth van Dijk & Alex van de Minne, 2018. "Does Housing Vintage Matter? Exploring the Historic City Center of Amsterdam," DNB Working Papers 617, Netherlands Central Bank, Research Department.
    22. Johannes Hönekopp & Audrey Helen Linden, 2022. "Heterogeneity estimates in a biased world," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:88:y:2020:i:2:p:519-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.