IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v78y2010i1p102-116.html
   My bibliography  Save this article

Profile Likelihood and Incomplete Data

Author

Listed:
  • Zhiwei Zhang

Abstract

According to the law of likelihood, statistical evidence is represented by likelihood functions and its strength measured by likelihood ratios. This point of view has led to a likelihood paradigm for interpreting statistical evidence, which carefully distinguishes evidence about a parameter from error probabilities and personal belief. Like other paradigms of statistics, the likelihood paradigm faces challenges when data are observed incompletely, due to non‐response or censoring, for instance. Standard methods to generate likelihood functions in such circumstances generally require assumptions about the mechanism that governs the incomplete observation of data, assumptions that usually rely on external information and cannot be validated with the observed data. Without reliable external information, the use of untestable assumptions driven by convenience could potentially compromise the interpretability of the resulting likelihood as an objective representation of the observed evidence. This paper proposes a profile likelihood approach for representing and interpreting statistical evidence with incomplete data without imposing untestable assumptions. The proposed approach is based on partial identification and is illustrated with several statistical problems involving missing data or censored data. Numerical examples based on real data are presented to demonstrate the feasibility of the approach. Selon la loi des vraisemblances, les preuves statistiques sont représentées par des fonctions de vraisemblance et leur solidité est mesurée par des rapports de vraisemblance. Ce point de vue a conduit à un paradigme de la vraisemblance destinéà interpréter les preuves statistiques et qui fait soigneusement la distinction entre les preuves d'un paramètre et les probabilités d'erreur, ainsi que les croyances personnelles. Comme c'est le cas pour d'autres paradigmes de statistiques, le paradigme de la vraisemblance est confrontéà des défis en cas d'observation incomplète de données en raison de l'absence de réponses ou de censure, par exemple. Les méthodes classiques destinées à générer des fonctions de vraisemblance dans de telles circonstances, exigent généralement des suppositions sur le mécanisme régissant l'observation incomplète de données, suppositions qui reposent habituellement sur des informations extérieures ne pouvant pas être validées par les données observées. Sans informations externes fiables, l'usage de suppositions non vérifiables entraînées par la commodité pourrait potentiellement compromettre l'interprétation de la vraisemblance qui en résulte, en tant que représentation objective des preuves observées. Cet article propose une approche de vraisemblance de profil pour représenter et interpréter des preuves statistiques avec des données incomplètes, sans imposer de suppositions non vérifiables. L'approche proposée repose sur une identification partielle et elle est illustrée au moyen de plusieurs problèmes statistiques mettant en jeu des données manquantes ou censurées. Des exemples numériques reposant sur des données réelles sont présentés, afin de démontrer la faisabilité de l'approche.

Suggested Citation

  • Zhiwei Zhang, 2010. "Profile Likelihood and Incomplete Data," International Statistical Review, International Statistical Institute, vol. 78(1), pages 102-116, April.
  • Handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:102-116
    DOI: 10.1111/j.1751-5823.2010.00107.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2010.00107.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2010.00107.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Royall & Tsung‐Shan Tsou, 2003. "Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 391-404, May.
    2. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    3. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James L. Powell, 2017. "Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 107-124, Spring.
    2. Galichon, Alfred & Henry, Marc, 2009. "A test of non-identifying restrictions and confidence regions for partially identified parameters," Journal of Econometrics, Elsevier, vol. 152(2), pages 186-196, October.
    3. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    4. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    5. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    6. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    7. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    8. Molinari, Francesca, 2010. "Missing Treatments," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 82-95.
    9. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    10. Andrew Chesher & Adam Rosen, 2015. "Characterizations of identified sets delivered by structural econometric models," CeMMAP working papers CWP63/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. International Labour Office., 2004. "Global employment trends : January 2004," Global Employment Trends Reports 994802133402676, International Labour Office, Economic and Labour Market Analysis Department.
    12. Yongwei Chen & Dahai Fu, 2015. "Measuring income inequality using survey data: the case of China," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 13(2), pages 299-307, June.
    13. Lothar Essig & Joachim K. Winter, 2009. "Item Non-Response to Financial Questions in Household Surveys: An Experimental Study of Interviewer and Mode Effects," Fiscal Studies, Institute for Fiscal Studies, vol. 30(Special I), pages 367-390, December.
    14. Karsten Marshall Elseth Rieck & Kjetil Telle, 2012. "Sick leave before, during and after pregnancy," Discussion Papers 690, Statistics Norway, Research Department.
    15. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    16. Laura Coroneo & Valentina Corradi & Paulo Santos Monteiro, 2018. "Testing for optimal monetary policy via moment inequalities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 780-796, September.
    17. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rubin, 2001. "Combining Panel Data Sets with Attrition and Refreshment Samples," Econometrica, Econometric Society, vol. 69(6), pages 1645-1659, November.
    18. Kraft, Holger & Kroisandt, Gerald & Müller, Marlene, 2002. "Assessing the discriminatory power of credit scores," SFB 373 Discussion Papers 2002,67, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Esmerelda A. Ramalho & Richard Smith, 2003. "Discrete choice non-response," CeMMAP working papers 07/03, Institute for Fiscal Studies.
    20. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:78:y:2010:i:1:p:102-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.