IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v22y2018i6p1413-1424.html
   My bibliography  Save this article

Urban Metabolism of Bangalore City: A Water Mass Balance Analysis

Author

Listed:
  • Reba Paul
  • Steven Kenway
  • Brian McIntosh
  • Pierre Mukheibir

Abstract

Cities are increasingly depending on energy‐intensive water sources, such as distant rivers and the ocean, to meet their water demand. However, such expensive sources could be avoided using alternative local sources of water such as wastewater, rainwater, and stormwater. Many cities do not have robust accounts of those localized water resources, as estimating those resources requires comprehensive accounting in complex urban water systems. In this article, we investigate whether an urban metabolism evaluation framework built on the urban water mass balance can help analyze these resources, especially in a rapidly growing developing city. We first refined the water mass balance equation developed by Kenway and his colleagues in 2011 for a developing country context with the inclusion of some significant components such as system loss. Then, we applied the refined equation for the first time to Bangalore city in India, a developing country, for the year 2013–2014 as a real case example, which is a rare water mass balance analysis of its kind. The refined equation helped analyze Bangalore's urban water system. The total available wastewater, stormwater, and rainwater were 656 gigaliters (GL). The gap between water demand and supply could be met if 54% of this recycled potential were harnessed. Wastewater had enough potential (362 GL) to replace the whole centralized water supply from the Cauvery. A scenario analysis showed that the gap between water demand and supply in 2021 can be met if 60% of total recycled potential is utilized. This approach can be used to help other cities identify the potential of alternative water sources and support integrated water planning and monitoring water metabolic performance.

Suggested Citation

  • Reba Paul & Steven Kenway & Brian McIntosh & Pierre Mukheibir, 2018. "Urban Metabolism of Bangalore City: A Water Mass Balance Analysis," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1413-1424, December.
  • Handle: RePEc:bla:inecol:v:22:y:2018:i:6:p:1413-1424
    DOI: 10.1111/jiec.12705
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12705
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krishnaraj, 2013. "Where all the water has gone? An analysis of unreliable water supply in Bangalore city," Working Papers 307, Institute for Social and Economic Change, Bangalore.
    2. Matthew Gandy, 2004. "Rethinking urban metabolism: water, space and the modern city," City, Taylor & Francis Journals, vol. 8(3), pages 363-379, December.
    3. Xuemei Bai, 2007. "Industrial Ecology and the Global Impacts of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 1-6, April.
    4. Sabine Barles, 2009. "Urban Metabolism of Paris and Its Region," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 898-913, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. David Pérez-González & Gian Carlo Delgado-Ramos & Lilia Cedillo Ramírez & Rosalva Loreto López & María Elena Ramos Cassellis & José Víctor Rosendo Tamariz Flores & Ricardo Darío Peña Moreno, 2023. "Puebla City Water Supply from the Perspective of Urban Water Metabolism," Sustainability, MDPI, vol. 15(19), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David N. Bristow & Eugene A. Mohareb, 2020. "From the urban metabolism to the urban immune system," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 300-312, April.
    2. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    3. Ramesh, Niranjana, 2022. "An experiment with the minor geographies of major cities: infrastructural relations among the fragments," LSE Research Online Documents on Economics 114952, London School of Economics and Political Science, LSE Library.
    4. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    5. Angelica Pianegonda & Sara Favargiotti & Marco Ciolli, 2022. "Rural–Urban Metabolism: A Methodological Approach for Carbon-Positive and Circular Territories," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    6. Vanesa Castán Broto & Harriet Bulkeley, 2013. "Maintaining Climate Change Experiments: Urban Political Ecology and the Everyday Reconfiguration of Urban Infrastructure," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 37(6), pages 1934-1948, November.
    7. Allisa G. Hastie & Christopher M. Chini & Ashlynn S. Stillwell, 2022. "A mass balance approach to urban water analysis using multi‐resolution data," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 213-224, February.
    8. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    9. Canoy, Nico A. & Robles, Augil Marie Q. & Roxas, Gilana Kim T., 2022. "Bodies-in-waiting as infrastructure: Assembling the Philippine Government's disciplinary quarantine response to COVID-19," Social Science & Medicine, Elsevier, vol. 294(C).
    10. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    11. John, Beatrice & Luederitz, Christopher & Lang, Daniel J. & von Wehrden, Henrik, 2019. "Toward Sustainable Urban Metabolisms. From System Understanding to System Transformation," Ecological Economics, Elsevier, vol. 157(C), pages 402-414.
    12. Rafaela Tirado & Adélaïde Aublet & Sylvain Laurenceau & Mathieu Thorel & Mathilde Louërat & Guillaume Habert, 2021. "Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    13. Mingyue Yang & Ningyin Liu & Xinjing Wang & Yan Zhang, 2023. "Chinese cities exhibit diverse allometric growth patterns in material metabolism," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1626-1638, December.
    14. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Urban Metabolism of Six Asian Cities," ADB Reports RPT146817-2, Asian Development Bank (ADB).
    15. Asterios Papageorgiou & Rajib Sinha & Björn Frostell & Cecilia Sundberg, 2020. "A new physical accounting model for material flows in urban systems with application to the Stockholm Royal Seaport District," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 459-472, June.
    16. Lisa Björkman, 2014. "Becoming a Slum: From Municipal Colony to Illegal Settlement in Liberalization-Era Mumbai," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 38(1), pages 36-59, January.
    17. Franciszek Chwałczyk, 2020. "Around the Anthropocene in Eighty Names—Considering the Urbanocene Proposition," Sustainability, MDPI, vol. 12(11), pages 1-33, May.
    18. Austin Zeiderman, 2012. "On Shaky Ground: The Making of Risk in Bogotá," Environment and Planning A, , vol. 44(7), pages 1570-1588, July.
    19. Alan Gilbert, 2007. "Water for All: How To Combine Public Management with Commercial Practice for the Benefit of the Poor?," Urban Studies, Urban Studies Journal Limited, vol. 44(8), pages 1559-1579, July.
    20. Chihsin Chiu, 2020. "Theorizing Public Participation and Local Governance in Urban Resilience: Reflections on the “Provincializing Urban Political Ecology” Thesis," Sustainability, MDPI, vol. 12(24), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:22:y:2018:i:6:p:1413-1424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.