IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2191-d331526.html
   My bibliography  Save this article

The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia

Author

Listed:
  • Jean-Baptiste Bahers

    (Institut de Recherche des Sciences et Techniques de la Ville (IRSTV), Ecole Centrale de Nantes, 44321 Nantes cedex 3, France
    CNRS, UMR ESO (Spaces and societies), Institute of Geography, University of Nantes, 44321 Nantes cedex 3, France)

  • Paula Higuera

    (Institut de Recherche des Sciences et Techniques de la Ville (IRSTV), Ecole Centrale de Nantes, 44321 Nantes cedex 3, France
    Laboratory of Economics and Management Nantes Atlantique (LEMNA), University of Nantes, 44322 Nantes, France)

  • Anne Ventura

    (Institut de Recherche des Sciences et Techniques de la Ville (IRSTV), Ecole Centrale de Nantes, 44321 Nantes cedex 3, France
    University Gustave Eiffel (IFSTTAR), MAST GPEM, Campus of Nantes, Route de Bouaye, CS5004, FR-44344 Nantes cedex, France)

  • Nicolas Antheaume

    (Institut de Recherche des Sciences et Techniques de la Ville (IRSTV), Ecole Centrale de Nantes, 44321 Nantes cedex 3, France
    Laboratory of Economics and Management Nantes Atlantique (LEMNA), University of Nantes, 44322 Nantes, France)

Abstract

The concept of island metabolism strives to implement the principles of social ecology at the island scale. It is, therefore, a question of analyzing the flows of materials and energy passing through these territories, as well as the resource base needed to sustain their activities. We propose to develop a nexus approach to the New Caledonian island metabolism to understand the interactions between biophysical structures and societal, as well as economic, activities. Metals, construction minerals, and energy are good symbols of economies based on the extraction of non-renewable resources. This is why, in this article, we sought to investigate how the “metal-energy-construction mineral” nexus can affect the resilience and metabolic sustainability of the extractive island of New Caledonia. We carried out the Material and Energy Flow Analysis (MEFA) of each nexus subsystem for 2016 and of the nodes of interdependence. We also interrogated the role of importing countries because the island’s metabolism is dominated by the nickel extraction industry. Indeed, the metabolic profile of this island corresponds to the one of a supply territory for other consumption territories. The latter outsource the impacts of their own consumption to New Caledonia. Finally, based on interviews with economic stakeholders, we studied the potential building blocks for the emergence of an industrial symbiosis in the nexus.

Suggested Citation

  • Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2191-:d:331526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bringezu, Stefan & Schutz, Helmut & Steger, Soren & Baudisch, Jan, 2004. "International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR," Ecological Economics, Elsevier, vol. 51(1-2), pages 97-124, November.
    2. Hamiche, Ait Mimoune & Stambouli, Amine Boudghene & Flazi, Samir, 2016. "A review of the water-energy nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 319-331.
    3. Martinico-Perez, Marianne Faith G. & Schandl, Heinz & Fishman, Tomer & Tanikawa, Hiroki, 2018. "The Socio-Economic Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of Economic Growth and Environmental Pressures in the Philippines," Ecological Economics, Elsevier, vol. 147(C), pages 155-166.
    4. P. J. Deschenes & Marian Chertow, 2004. "An island approach to industrial ecology: towards sustainability in the island context," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 47(2), pages 201-217.
    5. João Patrício & Yuliya Kalmykova & Leonardo Rosado & Vera Lisovskaja, 2015. "Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 837-852, October.
    6. Matthew J. Eckelman & Marian R. Chertow, 2009. "Using Material Flow Analysis to Illuminate Long‐Term Waste Management Solutions in Oahu, Hawaii," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 758-774, October.
    7. Nađa Džubur & Hanno Buchner & David Laner, 2017. "Evaluating the Use of Global Sensitivity Analysis in Dynamic MFA," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1212-1225, October.
    8. Jean‐Baptiste Bahers & Sabine Barles & Mathieu Durand, 2019. "Urban Metabolism of Intermediate Cities: The Material Flow Analysis, Hinterlands and the Logistics‐Hub Function of Rennes and Le Mans (France)," Journal of Industrial Ecology, Yale University, vol. 23(3), pages 686-698, June.
    9. David Laner & Helmut Rechberger & Thomas Astrup, 2014. "Systematic Evaluation of Uncertainty in Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 859-870, December.
    10. Fridolin Krausmann & Regina Richter & Nina Eisenmenger, 2014. "Resource Use in Small Island States," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 294-305, April.
    11. Shweta Singh & Christopher Kennedy, 2018. "The Nexus of Carbon, Nitrogen, and Biodiversity Impacts from Urban Metabolism," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 853-867, August.
    12. Heinz Schandl & Marina Fischer‐Kowalski & James West & Stefan Giljum & Monika Dittrich & Nina Eisenmenger & Arne Geschke & Mirko Lieber & Hanspeter Wieland & Anke Schaffartzik & Fridolin Krausmann & S, 2018. "Global Material Flows and Resource Productivity: Forty Years of Evidence," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 827-838, August.
    13. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    14. Schaffartzik, Anke & Mayer, Andreas & Eisenmenger, Nina & Krausmann, Fridolin, 2016. "Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society's skeleton," Ecological Economics, Elsevier, vol. 122(C), pages 101-110.
    15. Anke Schaffartzik & Melanie Pichler, 2017. "Extractive Economies in Material and Political Terms: Broadening the Analytical Scope," Sustainability, MDPI, vol. 9(7), pages 1-17, June.
    16. Thompson, Benjamin S., 2018. "The political ecology of mangrove forest restoration in Thailand: Institutional arrangements and power dynamics," Land Use Policy, Elsevier, vol. 78(C), pages 503-514.
    17. Sabine Barles, 2010. "Society, energy and materials: the contribution of urban metabolism studies to sustainable urban development issues," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(4), pages 439-455.
    18. Helmut Haberl & Dominik Wiedenhofer & Stefan Pauliuk & Fridolin Krausmann & Daniel B. Müller & Marina Fischer-Kowalski, 2019. "Contributions of sociometabolic research to sustainability science," Nature Sustainability, Nature, vol. 2(3), pages 173-184, March.
    19. Conde, Marta, 2017. "Resistance to Mining. A Review," Ecological Economics, Elsevier, vol. 132(C), pages 80-90.
    20. Bahers, Jean-Baptiste & Tanguy, Audrey & Pincetl, Stephanie, 2020. "Metabolic relationships between cities and hinterland: a political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France)," Ecological Economics, Elsevier, vol. 167(C).
    21. Ilse M. Voskamp & Sven Stremke & Marc Spiller & Daniela Perrotti & Jan Peter Hoek & Huub H. M. Rijnaarts, 2017. "Enhanced Performance of the Eurostat Method for Comprehensive Assessment of Urban Metabolism: A Material Flow Analysis of Amsterdam," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 887-902, August.
    22. Fan, Jing-Li & Kong, Ling-Si & Wang, Hang & Zhang, Xian, 2019. "A water-energy nexus review from the perspective of urban metabolism," Ecological Modelling, Elsevier, vol. 392(C), pages 128-136.
    23. Sabine Barles, 2009. "Urban Metabolism of Paris and Its Region," Journal of Industrial Ecology, Yale University, vol. 13(6), pages 898-913, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Baptiste Bahers & Paula Higuera & Anne Ventura & Nicolas Antheaume, 2020. "The “Metal-Energy-Construction Mineral” Nexus in the Island Metabolism: The Case of the Extractive Economy of New Caledonia," Post-Print hal-02507504, HAL.
    2. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    3. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    5. Roxana Popescu & Hélène Beraud & Bruno Barroca, 2020. "The Impact of Hurricane Irma on the Metabolism of St. Martin’s Island," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    6. Liu, Ningyin & Zhang, Yan & Fath, Brian D., 2021. "The material metabolism characteristics and growth patterns of the central cities of China's Beijing-Tianjin-Hebei region," Ecological Modelling, Elsevier, vol. 448(C).
    7. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    8. Taiwo Temitope Lasisi & Kayode Kolawole Eluwole & Uju Violet Alola & Luigi Aldieri & Concetto Paolo Vinci & Andrew Adewale Alola, 2021. "Do Tourism Activities and Urbanization Drive Material Consumption in the OECD Countries? A Quantile Regression Approach," Sustainability, MDPI, vol. 13(14), pages 1-13, July.
    9. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    10. Simron Jit. Singh & Marina Fischer-Kowalski & Marian Chertow, 2020. "Introduction: The Metabolism of Islands," Sustainability, MDPI, vol. 12(22), pages 1-8, November.
    11. Schaffartzik, Anke & Duro, Juan Antonio & Krausmann, Fridolin, 2019. "Global appropriation of resources causes high international material inequality – Growth is not the solution," Ecological Economics, Elsevier, vol. 163(C), pages 9-19.
    12. Marian R. Chertow & Thomas E. Graedel & Koichi S. Kanaoka & Jooyoung Park, 2020. "The Hawaiian Islands: Conceptualizing an Industrial Ecology Holarchic System," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    13. Daniela Perrotti & Sven Stremke, 2020. "Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research," Environment and Planning B, , vol. 47(4), pages 678-694, May.
    14. Bahers, Jean-Baptiste & Tanguy, Audrey & Pincetl, Stephanie, 2020. "Metabolic relationships between cities and hinterland: a political-industrial ecology of energy metabolism of Saint-Nazaire metropolitan and port area (France)," Ecological Economics, Elsevier, vol. 167(C).
    15. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    16. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    17. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    18. Angelica Pianegonda & Sara Favargiotti & Marco Ciolli, 2022. "Rural–Urban Metabolism: A Methodological Approach for Carbon-Positive and Circular Territories," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    19. Antoine Fontaine & Laurence Rocher, 2024. "Cities looking for waste heat: The dilemmas of energy and industry nexuses in French metropolitan areas," Urban Studies, Urban Studies Journal Limited, vol. 61(2), pages 254-272, February.
    20. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2191-:d:331526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.